Занятие 4.

Вероятность в теории чисел. Метод второго момента.

Следующий результат, принадлежащий Эрдешу, использует довольно неожиданную вероятностную конструкцию.

Назовем множество $A \subset \mathbb{Z}$ свободным от сумм, если не найдется трех (не обязательно различных) элементов $a, b, c \in A$ таких, что a + b = c.

Теорема. Каждое множество B из n ненулевых целых чисел содержит свободное от сумм подмножество A, содержащее |A| > n/3 чисел.

Доказательство. Выберем простое число p=3k+2 так, что все элементы множества B меньше, чем k. Докажем, что можно найти $A\subset B$ требуемой мощности свободным от сумм по модулю p (то есть a+b-c не кратно p для всех a,b,c в A). Заметим, что множество $C:=\{k+1,k+2,\ldots,2k+1\}$ свободно от сумм по модулю p. Выберем случайно остаток $a\in\{1,2,\ldots,p-1\}$ по модулю p согласно равномерному распределению и рассмотрим случайную величину

$$X = |a \cdot C \cap B| = \sum_{c \in C} |\{ac\} \cap B|$$

(здесь мы отождествляем B с множеством остатков по модулю p). Заметим, что математическое ожидание случайной величины $|\{ac\}\cap B|$ равно |B|/(p-1), поскольку числа ac пробегают при менябщемся a по разу все ненулевые остатки по модулю p. Таким образом, $E(X) = |C| \cdot |B|/(p-1) > |B|/3$. Значит, найдется такое a, что $|a \cdot C \cap B| > |B|/3$. В качестве A можно взять $a \cdot C \cap B$.

Упражнение. Если a_i $(i=1,2,\ldots,s)$ — целые числа, то найдется такая константа c>0, что в любом конечном множестве $B\subset\mathbb{Z}$ найдется подмножество $A\subset B$ такое, что $|A|\geq c|B|$ и $\sum a_ix_i\neq 0$ для любых $x_i\in A$.

Перейдем от комбинаторной теории чисел к "настоящей".

Рассмотрим следующий вопрос: как распределено количество $\nu(k)$ различных простых делителей наугад выбранного от 1 до n натурального числа k?

Оказывается, что это количество почти для всех чисел k величина $\nu(k)$ мало отличается от $\ln \ln n$.

Точное утверждение дается следующей теоремой:

Теорема. Пусть $w(n) \to \infty$ произвольно медленно. Тогда количество тех $k \in \{1, 2, ..., n\}$, для которых $|\nu(k) - \ln \ln n| > w(n) \sqrt{\ln \ln n}$, есть o(n).

Нам понадобится следующее теоретико-числовое утверждение:

Лемма. $\sum_{p \le n} 1/p = \ln \ln n + O(1)$, где суммирование производится по всем простым числам $p \le n$.

Доказательство леммы. Сначала вычислим асимптотику суммы $\sum_{p < n} \ln p/p$. Для этого разложим на простые множители число n!:

$$n! = \prod_{p \le n} p^{c_p},$$

где произведение берется по простым p и $c_p = [n/p] + [n/p^2] + [n/p^3] + \dots$. Имеем

$$n/p - 1 \le [n/p] \le c_p \le n/p + n/p^2 + \dots = n/(p-1).$$

Подставляя эти значения в выражение для n! и логарифмируя, получаем

$$n\sum \frac{\ln p}{p} - \sum \ln p \le n! \le n\sum \frac{\ln p}{(p-1)} = n\sum \frac{\ln p}{p} + n\sum \frac{\ln p}{p(p-1)}$$

(суммирование везде по простым $p \leq n$). Заметим, что $(n/e)^n < n! < n^n$ (левое неравенство устанавливается, например, по индукции). Кроме того, $\prod_{p \leq n} p \leq 4^n$. Это следует из того, что указанное произведение делит $C_n^{n/2} \cdot C_{n/2}^{n/4} \cdot C_{n/4}^{n/8} \dots$ (подробности, связанные с тем, что n может не быть степенью двойки, опускаются). Наконец, заметим, что $\sum \ln p/(p^2-p) = O(1)$. Резуюмируя получаем, что

$$S_n := \sum_{p \le n} \frac{\ln p}{p} = \frac{1}{n} \ln n! + O(1) = \ln n + O(1).$$

Выразим интересующую нас сумму $\Sigma_n = \sum_{p \leq n} 1/p$ через S_1, S_2, \ldots, S_n . Имеем

$$\Sigma_n = \sum_{p \le n} 1/p = \sum_{k=1}^n \frac{S_k - S_{k-1}}{\ln k} = \sum_{k=1}^n S_k \left(\frac{1}{\ln k} - \frac{1}{\ln(k+1)} \right) + S_n \ln(n+1).$$

Заметим, что

$$S_k\left(\frac{1}{\ln k} - \frac{1}{\ln(k+1)}\right) = (\ln(k+1) + O(1))\left(\frac{1}{\ln k} - \frac{1}{\ln(k+1)}\right).$$

Слагаемые типа $O(1)(\frac{1}{\ln k} - \frac{1}{\ln(k+1)})$ дадут в сумме O(1). Также $S_n \ln(n+1) = O(1)$. Далее,

$$\ln(k+1)\left(\frac{1}{\ln k} - \frac{1}{\ln(k+1)}\right) = \frac{\ln(k+1)}{\ln k} - 1 = \ln\frac{\ln(k+1)}{\ln k} + O\left(\left(\frac{\ln(k+1)}{\ln k} - 1\right)^2\right),$$

мы воспользовались формулой Тейлора $x-1=\ln x+O((x-1)^2), x\to 1$. Заметим, что $\ln(k+1)-\ln(k)=\ln(1+1/k)=O(1/k)$, так что $(\frac{\ln(k+1)}{\ln k}-1)^2=o(1/k^2)$. Значит, соответствующие поправки $O\left(\left(\frac{\ln(k+1)}{\ln k}-1\right)^2\right)$ также дадут в сумме O(1).

Итого

$$\Sigma_n = \sum_{k=2}^n \ln \frac{\ln(k+1)}{\ln k} + O(1) = \ln \ln n + O(1).$$

Лемма доказана.

Доказательство теоремы.

Пусть k выбирается в множестве $\{1,2,\ldots,n\}$ согласно равномерному распределению. Определим для каждого простого $p \leq n$ случайную величину X_p как индикатор события $\{k$ кратно $p\}$. Тогда $\nu = \sum_p p \leq n X_p$ и требуется доказать, что

$$\mathsf{P}\left(|\nu - \ln \ln n| > w(n)\sqrt{\ln \ln n}\right) \to 0 \tag{1}$$

Пусть $M=n^{1/5}$ и $\nu_1=\sum_{p\leq M}X_p$. Заметим, что $\nu_1\leq \nu\leq \nu_1+4$ (так как любое число k от 1 до n имеет не более четырех простых множителей, больших, чем M). Поэтому можно заменить в (1) ν на ν_1 .

Заметим, что

$$E(\nu) = n^{-1} \sum_{p \le n} [n/p] = \sum_{p < n} 1/p + O(1) = \ln \ln n + O(1)$$

в силу нашей леммы. Таким образом, можно заменить также $\ln \ln n$ на $E\nu_1=E\nu+O(1)$.

Для оценки $\mathsf{P}(|\nu_1 - E\nu_1| > w(n)\sqrt{\ln \ln n})$ воспользуемся неравенством Чебышева

$$\mathsf{P}\left(|\nu_1 - E\nu_1| > w(n)\sqrt{\ln \ln n}\right) \le \frac{\operatorname{Var} \nu_1}{w^2(n)\ln \ln n},$$

где Var обозначает дисперсию случайной величины. Таким образом, достаточно доказать, что $Var\nu_1 = O(\ln \ln n)$.

Для этого заметим, что

$$\operatorname{Var} \nu_1 = \sum_{p \le M} \operatorname{Var} X_p + 2 \sum_{p < q \le M} \operatorname{Cov}(X_p, X_q),$$

где $\mathrm{Cov}(X,Y)=E(X\cdot Y)-E(X)\cdot E(Y)$ обозначет ковариацию случайных величин X и Y. Это равенство получается из формулы $E(X)=E(X^2)-(EX)^2$ путем раскрытия скобок.

Заметим, что $\operatorname{Var} X_p \leq E(X_p)^2 = E(X_p)$, так что первая сумма не превосходит $E(\nu_1) = \ln \ln n + O(1)$.

Оценим $Cov(X_p, X_q)$:

$$Cov(X_p, X_q) = \frac{[n/pq]}{n} - \frac{[n/p]}{n} \cdot \frac{[n/q]}{n} \le \frac{1}{pq} - (1/p - 1/n)(1/q - 1/n) < 1/n(1/p + 1/q) \le 2/n.$$

Поскольку количество пар различных p,q не превосходит $M^2 < n$, получаем, что сумма ковариаций есть O(1).

Доказательство теоремы завершено.

Использование неравенства Чеьышева называется методом второго момента.

Приведем пример из теории случайных графов.

Сначала рассмотрим такую ситуацию: имеются случайные величины X_1, X_2, \ldots, X_m , являющиеся индикаторами некоторых событий A_1, A_2, \ldots, A_m (то есть $X_i = 1$, если происходит событие A_i и $X_i = 0$ в противном случае). Положим $X = \sum X_i$. Как оценить сверух вероятность того, что X = 0? Воспользуемся неравенством Чебышева:

$$P\{X = 0\} \le P\{|X - E(X)|^2 \ge E(X)^2\} \le \frac{\operatorname{Var}(X)}{E(X)^2}.$$
 (1)

Теперь оценим Var(X). Будем писать $i \sim j$, если $i \neq j$ и события A_i, A_j не являются независимыми. Имеем

$$\operatorname{Var}(X) = \sum \operatorname{Var}(X_i) + 2 \sum_{i \sim j} \operatorname{Cov}(X_i, X_j) \le E(X) + 2 \sum_{i \sim j} E(X_i \cdot X_j). \tag{2}$$

Теперь докажем следующее типичное утверждение теории случайных графов:

Теорема. Рассмотрим случайный граф G(n,p) на n вершинах, в котором каждое ребро проводится случайно независимо от других ребер с вероятностью p. Тогда при $p=o(n^{-2/3})$ вероятность наличия в графе G(n,p) клики на четырех вершинах стремится к нулю, а при $p\gg n^{-2/3}$ (то есть $\lim p/n^{-2/3}=+\infty$) вероятность наличия такой клики стремится к бесконечности.

Доказательство. Пронумеруем четверки вершин нашего графа индексом i. Пусть A_i — вероятность того, что вершины i-ой четверки образуют клику, X_i — идикатор события A_i , $X = \sum X_i$. Имеем $E(X) = p^6 \cdot C_n^4$, так что при $p \ll n^{-2/3}$ имеем E(X) = o(1) и вероятность того, что $X \ge 1$ (то есть вероятность наличия клики) стремится к нулю. При $p \gg n^{-2/3}$ имеем $E(X) \to +\infty$. Докажем, что $Var(X) = o(E(X)^2)$ — из этого в

силу (1) будет следовать требуемое. Оценим $\mathrm{Var}(X)$ как в (2). Первое слагаемое E(X) есть $o(E(X)^2)$. Оценим сумму $E(X_iX_j) = \mathsf{P}(A_i\cap A_j)$ для всех пар зависимых событий. Для каждого из $O(n^4)$ событий имеется $O(n^2)$ зависимых событий, соответствующих четверкам, пересекающимся по двум вершинам, и O(n) событий, соответствующих четверкам, пересекающимся по трем вершинам. В первом случае вероятность одновременного выполнения событий есть p^{11} , во втором — p^9 . Итак,

$$\sum_{i \sim j} \mathsf{P}(A_i \cap A_j) = O(n^6 p^{11} + n^5 p^9) = o(n^8 p^{12}) = o(E(X)^2),$$

что завершает доказательство.