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Abstract. The paper presents a series of principally di¤erent Cy-smooth counterexamples to
the following hypothesis on a characterization of the sphere: Let KHR3 be a smooth convex
body. If at every point of qK, we have R1 cCcR2 for a constant C, then K is a ball. (R1 and
R2 stand for the principal curvature radii of qK .)
The hypothesis was proved by A. D. Alexandrov and H. F. Münzner for analytic bodies. For

the case of general smoothness it has been an open problem for years. Recently, Y. Martinez-
Maure has presented a C2-smooth counterexample to the hypothesis.
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1 Introduction

The present paper aims at a construction of a series of counterexamples to the fol-
lowing old hypothesis.

Let KHR3 be a smooth convex body. Suppose the inequality R1 cCcR2 is valid

at every point of qK for a constant C. Then K is a ball of radius C. (R1 cR2 are the

principal curvature radii of qK .)
This hypothesis was proved by A. D. Alexandrov and H. F. Münzner for analytic

bodies (see [1] and [14]). There are also some partial results when the hypothesis
is valid for nonanalytic surfaces (see [6], [15], and [24]). For the general case of
smoothness, the hypothesis has remained an open problem for years. For a long time,
mathematicians were certain that it is also true for all smooth convex bodies, but
gradually abandoned their attempts to prove it. Only recently, nearly at one and the
same time (and absolutely independently) two mutually contradicting papers have
appeared: one by A. V. Pogorelov containing an erroneous proof of the hypothesis
for C 2-surfaces (see [19] and [20]) and another one by Y. Martinez-Maure [10] con-
taining a C2-smooth counterexample to the hypothesis. Despite their independence,
both authors used the same trick (which also can be traced in the early paper of
Alexandrov [1]): they reduced the problem to the consideration of smooth hyperbolic
hérissons, that is, a special type of saddle surfaces. (The theory of hérissons is widely
developed in [7], [9], [10], [11], [22], and other papers. Although Alexandrov and
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Pogorelov used a di¤erent terminology, their constructions are equivalent to those in
the theory of hérissons.)

This trick reveals a simple relationship between the hypothesis and the extrinsic
geometry of saddle surfaces. It is remarkable that the latter subject was investigated
rather actively in the 60s of the last century by some Russian mathematicians, but
without any connection with the hypothesis (see [4] and [23] for detailed reviews).

Pogorelov’s paper contains an uncorrectable mistake. The example of Martinez-
Maure is correct.

On the other hand, the investigation of hérissons (which are, roughly speaking,
Minkowski di¤erences of smooth convex bodies) has an obvious interplay with the
theory of virtual polytopes (which are, roughly speaking, Minkowski di¤erences of
convex polytopes). Virtual polytopes were introduced originally by A. Pukhlikov and
A. Khovanskij [5] for some reasons of algebraic geometry. They also appeared in the
polytope algebras of P. McMullen. In addition, recently Y. Martinez-Maure has also
presented a general theory of virtual polytopes (he calls them ‘‘discrete hérissons’’),
which leads to the same notion [11].

The counterexample of Martinez-Maure is based on a construction of a C2-smooth
saddle surface containing 4 cross-caps (see Figure 2.4). The surface is given by
an explicit formula. Later, Y. Martinez-Maure presented a polytopal version of his
counterexample, namely, a discrete hérisson (i.e., a virtual polytope) which has 4
discrete cross-caps (see Figure 5.4).

In the present paper, at an attempt to obtain new counterexamples, we move in the
opposite direction: we start (Section 5) by constructing a hyperbolic virtual polytope
with N cross-caps (Nd 4 is any even number) and after that, using smoothening
techniques, we obtain (Theorem 6.1) a Cy-smooth hyperbolic hérisson with N

smooth cross-caps. The latter gives us the desired series of counterexamples.
The paper is organized as follows. Section 2 contains all necessary notions con-

cerning smooth hérissons and explains the above-mentioned trick of Martinez-Maure
and Pogorelov. Section 3 recalls briefly the notion of virtual polytopes. Section 4
introduces the notions of hyperbolic hérissons and hyperbolic virtual polytopes. Sec-
tion 5 presents a construction of a hyperbolic virtual polytope with N cross-caps
ðN ¼ 4; 6; 8; . . .Þ. Section 6 describes a smooth hyperbolic approximation of such a
polytope. This yields the desired series of counterexamples.

2 Smooth hérissons and the hypothesis

The present section reviews some methods and constructions of [7], [9], [10], [11], [20],
and some other papers concerning hérissons in R3.

As is known, the C2-smooth convex bodies form a semigroup H with respect to
the Minkowski addition n. Since the usual cancellation law is valid in this semi-
group, its Grothendieck group H� coincides with the group of formal expressions of
type B1 nB�1

2 , where B1;B2 A H.

Remark 2.1. In the polytope algebra (see [5], [12], and [13]), the Minkowski addition
plays the role of multiplication. Moreover, it reflects the multiplication in Picard
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groups of most of toric varieties. For this reason, we usen instead of more usual þ.
By ð�Þ�1 we mean inversion with respect ton.

Owing to linearity, there exist reasonable definitions of support function, support
planes and principal curvature radii for elements of H�.

Definition 2.2. Let B A H� and B ¼ B1 nB�1
2 , where B1 and B2 are convex smooth

bodies. The support function h of B is defined as the (pointwise) di¤erence of the
support functions of B1 and B2:

h ¼ hB1
� hB2

:

For each point x lying on the unit sphere S2 centered at the origin O (which is
identified with the set of unit vectors in R3), we define the oriented support plane eBðxÞ
with the normal vector x of B by the equation

ðx; xÞ ¼ hðxÞ:

By the hérisson B we mean the envelope of the family of planes feBðxÞgx AS 2 . It is
a sphere-homeomorphic surface with possible self-intersections and self-overlappings.
We say that a hérisson B is C2-smooth (Cy-smooth) if its support function is C2-
smooth (Cy-smooth).

As a set of points, a hérisson B coincides with the image of the mapping

j : S2 ! R3; ðx; y; zÞ ! ðh 0
xðx; y; zÞ; h 0

yðx; y; zÞ; h 0
zðx; y; zÞÞ:

Definition 2.3. Analogously to the classical convex case, we define the principal cur-

vature radii R1 and R2 of a hérisson B at the point x A S2 (or at the point jðxÞ A B) as
the eigenvalues of the matrix

h 00
xxðxÞ h 00

xyðxÞ
h 00
yxðxÞ h 00

yyðxÞ

 !
:

(x is codirected with the z axis.)

Although the support function of a hérisson is smooth, the hérisson itself (regarded
as a surface) may have singular points. For singular points of B, we have R1R2 ¼ 0.
If R1R2 0 0, the hérisson B is a smooth surface in a neighbourhood of jðxÞ and the
radii R1 and R2 coincide with the principal curvature radii (in the classical sense) of
the surface B.

Suppose a convex body B with a smooth support function is a counterexample to
the hypothesis, that is, we have everywhere R1 cCcR2. Consider now the hérisson
B0 ¼ BnD�1, where D is the ball of radius C. Since the support function behaves
additively with respect to Minkowski addition, the principal radii R0

1 and R0
2 of the

hérisson B0 satisfy the inequality R0
1 c 0cR0

2 . This means that the hérisson B0 is a
saddle surface.

New counterexamples to A. D. Alexandrov’s hypothesis 303

(V7 12/1/05 08:41) WDG/G J-1234 Adv. in Geom., 5:2 HC: WSL 10/1/05 Tmath .3.05.05 pp. 301-317 009_P (p. 303)



Conversely, let a hérisson B0 be a saddle surface (except for its singular points).
Owing to C2-smoothness, its principal curvature radii R0

1 and R0
2 are bounded from

below by a constant C. Then the convex body B ¼ B0 nD is a counterexample to
the hypothesis. (As above, D is the ball of radius C.)

Thus the hypothesis is reduced to the existence problem of a hyperbolic hérisson
(see Definition 4.1). A. V. Pogorelov tried to prove that such a surface does not exist.

The required hérisson (Figure 2.4) was constructed by Martinez-Maure [10]. It is
a self-intersecting surface, which is obtained by gluing together graphs of two func-
tions.

3 Virtual polytopes

The present section reviews some methods and constructions of [5], [16], [17], and [18]
for dimension 3.

Denote by P the set of all compact convex polytopes in R3 with a fixed origin O

(degenerate polytopes are also included). It is a semigroup with respect to the Min-
kowski additionn. Denote by P� the Grothendieck group of P. The element of P�

which is inverse to K A P is denoted by K�1.
A function F : R3 ! Z is polytopal if it admits a representation of the form

F ¼
X
i

aiIKi
;

where ai A Z, Ki A P, and IKi
is the indicator function of the polytope Ki:

IKi
ðxÞ ¼ 1 if x A Ki;

0 otherwise.

�

The set of all polytopal functions is denoted by M. It is endowed with two ring

Figure 2.4
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operations. The role of addition is played by the pointwise addition, denoted by þ.
The multiplication is generated by n and is denoted by the same symbol. The unit
element of the ring M is obviously the function E ¼ IfOg.

Identifying convex compact polytopes with their indicator functions, we get an in-
clusion p : PHM. Keeping this identification in mind, we write K instead of IK for
convenience.

All elements of the semigroup pðPÞ are invertible in M. Hence the inclusion
PHM induces an inclusion P� HM.

Definition 3.1. The image of the latter inclusion is called the group of virtual poly-
topes. For convenience, we denote it by the same letter P�.

Definition 3.2. Let K be a virtual polytope. Then there exist convex polytopes L and
M such that K ¼ LnM�1. The support function hK of the virtual polytope K is de-
fined to be the di¤erence of support functions of L and M:

hK ¼ hL � hM :

This definition is consistent with other definitions of the support function (see [5]
and [17]). Since we have defined the support function, we have the notion of support
oriented planes of a virtual polytope as well.

Definition 3.3 ([16]). Let K A M, K ¼
P

i aiKi with Ki A P. Let liðxÞ be the support
plane to Ki with the outer normal vector x. The polytope K x

i ¼ Ki V liðxÞ is called
the face with the normal vector x of the polytope Ki, whereas the polytopal function
K x ¼

P
i aiK

x
i is called the face with the normal vector x of the polytopal function K .

A face of a virtual polytope is a virtual polytope as well. 0-dimensional, 1-
dimensional and 2-dimensional faces are called vertices, edges and facets respectively.

Definition 3.4. A fan S is a finite collection of compact spherical polygons on the unit
sphere S2 (possibly nonconvex and disconnected ones) such that

� U ;V A S ) U VV A S;

� 6S ¼ S2;

� U 0V A S ) RelintU VRelintV ¼ q. (Relint stands for relative interior.)

The fan of a virtual polytope is defined below analogously to the classical defini-
tion of the outer normal fan. For a virtual polytope K A P, its fan SK is the collection
of spherically polytopal sets fSKðnÞg, where n ranges over the set of faces of K , and

SKðnÞ ¼ clfx jK x ¼ ng

(cl denotes the closure.)
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These polytopal sets are called the cells of the fan. Similarly to the convex case, the
support function of K is linear on each cell of SK . And similarly to convex polytopes,
the fan of a virtual polytope K can be defined as the minimal fan for which hK is
linear on each cell.

The 0-dimensional cells are called the vertices of the fan. The set of all vertices of a
fan is denoted by S0. It equals the set of normal vectors of all facets of K .

The collection of all 1-dimensional cells (¼ edges) of S is denoted by S1 and is
called the skeleton of S. The support of the skeleton supp S1 is the union of all edges
of S.

We say that K fits a fan S if S is a refinement of SK . It means that hK is linear on
each cell of S.

For a unit vector x and a real number h, denote by eðx; hÞ the plane whose equa-
tion is ðx; xÞ ¼ h. Note that a convex polytope K A P is uniquely defined by the set
S0 ¼ fxig and the values hKðxiÞ ¼ hi. Indeed, the collection feðxi; hiÞg is the collec-
tion of a‰ne hulls of its facets.

However, this assertion fails when passing to virtual polytopes. In this case we
have more freedom: we are free to choose a fan with vertices in fxig. The only thing
we have to worry about is the consistency condition which is motivated by the fol-
lowing remark.

Remark 3.5. Let K be a virtual polytope. For any cell a of SK with vertices
fx1; . . . ; xkg, the planes eðx1; h1Þ; . . . ; eðxk; hkÞ have a common point. This point is the
vertex of K corresponding to the cell a.

Consistency condition. We say that a fan S together with a function h : S0 ! R sat-
isfy the consistency condition, if for any cell a of S with vertices fx1; . . . ; xkg, the
planes eðx1; h1Þ; . . . ; eðxk; hkÞ have a common point.

The following theorem demonstrates that virtual polytopes are not uniquely re-
stored by the set fxig and values hi. It also shows that the cells in the virtual case may
be non-convex, disconnected or of a complicated topological form.

Theorem 3.6 ([18]). Let a fan S and a function h : S0 ! R satisfy the consistency

condition. Then there exists a unique virtual polytope K such that SK fits S and

hKðxiÞ ¼ hi.

The following theorem yields a simple way of constructing examples of virtual
polytopes.

Theorem 3.7. Construction of a virtual polytope related to an embedded simplicial

complex. Let BHR3 be a closed sphere-homeomorphic embedded (with possible self-

intersections) simplicial complex generated by a set of triangles fTig. Suppose there

exist a collection of normal vectors xi of the triangles Ti and a fan S with vertices in

fxig such that the combinatorics of S is dual to that of B. (In particular, xi and xj are

connected by an edge of S if and only if Ti and Tj share an edge in B.)
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Then there exists a virtual polytope K such that

� the set of closures of supports of facets of K coincides with the set of triangles fTig,
and

� SK ¼ S.

Here is an important example of this construction.

Example 3.8 ([17]). Hyperbolic tetrahedron. Let B be the complex of faces of a regular
tetrahedron DHR3. Choose the outward normal vectors of the triangles and connect
their spherical images as is shown in Figure 3.9. The sphere is divided into four equal
non-convex parts. Due to the above construction, we obtain a virtual polytope
D 0 0D which corresponds to this fan and this simplicial complex. It is a polytopal
function which equals �1 everywhere on the tetrahedron except two fixed edges. On
these edges the values of the function equal 0.

4 Hyperbolic virtual polytopes and hyperbolic hérissons

Let K be a virtual polytope or a smooth hérisson and let h ¼ hK be its support func-
tion. For x A S2, let eðxÞ be the plane defined by the equation ðx; xÞ ¼ 1. Consider the
restriction of h to the plane eðxÞ and denote by F ¼ FKðxÞ the graph of the restric-
tion. For a virtual polytope K , the surface F is piecewise linear. Its vertices and edges
correspond to those of SK intersected with the open hemisphere with the pole x. For a
smooth hérisson K , the surface F is smooth.

Definition 4.1. A virtual polytope K (or a smooth hérisson) is called hyperbolic if
FKðxÞ is a saddle surface for any x A S2.

Recall that a piecewise linear (or any other non-smooth surface) F is called a sad-

dle surface if there is no plane cutting a bounded connected component o¤ F (see [4]).

Let X ¼ fxig be a collection of points on S2 such that each open hemisphere con-
tains at least one point from the collection.

Figure 3.9
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Proposition 4.2. A hérisson K is hyperbolic if and only if FKðxÞ is a saddle surface for

any x A X. In this case, FKðxÞ is saddle for any other x A S2 as well.

Proof. Indeed, if the function hjeðxÞ is saddle at the point X A eðxÞ, then for any other
x 0, the function hjeðx 0Þ is saddle at the point X

0 A eðx 0Þ provided by X
jX j ¼

X 0

jX 0j . r

Remark 4.3. Martinez-Maure has already given two definitions of weak and strong
hyperbolicity for virtual polytopes (see [11]). The above definition is equivalent to
that of weak hyperbolicity.

Definition 4.4. We say that a vertex x of a fan S is nonconvex if for a neighbourhood
UðxÞ of x, S1 VUðxÞ lies on one side of a great circle containing x.

Proposition 4.6. Let K be a virtual polytope. Suppose that each vertex of its fan SK has

exactly 3 adjacent edges. Then the two assertions are equivalent:

� K is hyperbolic.

� Each vertex of SK is non-convex.

Proof. A vertex with exactly 3 adjacent edges can be cut o¤ the surface FKðxÞ if
and only if its image in the fan is convex. It remains to observe that if F is non-
hyperbolic, there exists a plane cutting a bounded component o¤ F containing ex-
actly one vertex. r

Corollary 4.7. The hyperbolic tetrahedron (Example 3.8) is a hyperbolic virtual poly-

tope.

5 Example of a hyperbolic virtual polytope with N cross-caps

The desired virtual polytope K is constructed as follows. First, we construct an em-
bedded simplicial complex. It consists of its upper and lower central parts (which
look like two folded stars) and of N discrete cross-caps (Figure 5.9). The triangles are
oriented, and the endpoints of their normal vectors serve as vertices of a fan (Figure
5.8). By Theorem 3.7, there exists a virtual polytope related to the complex.

Figure 4.5
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Planar stars. Let N be even, Nd 4.

Case 1. N/2 is odd. Consider a (planar) proper N=2-gon P. By the star with N

rays (based on P) we mean the broken line consisting of all longest diagonals of P.
Each of the diagonals is taken twice, so the broken line has a double self-overlapping.
The vertices fAig of the star (i.e., the vertices of P taken twice) are enumerated
clockwise.

Case 2. N/2 is even. Consider a (planar) proper N-gon P. By the star with N rays

(based on P) we mean the broken line consisting of all diagonals of P connecting a
vertex of P with a vertex lying next to the opposite one. Unlike the previous case, the
broken line is not self-overlapping. The vertices fAig of the star (i.e., the vertices of
P) are enumerated clockwise.

Central collections of triangles. Fix a Cartesian coordinate system ðO; x; y; zÞ. All the
vectors in R3 forming an angle with the z axis less than p=2 will be referred as ‘‘vec-
tors looking upwards’’. If the angle is more than p=2, we say that the vector looks

downwards. If the angle equals 0, the vector is called horizontal.
Consider a star with N rays ðN ¼ 4; 6; 8; . . .Þ lying in the plane z ¼ 0 and centered

at O. Denote its vertices by fA 0
ig

N
i¼1. Let A

0
i ¼ ðxi; yi; 0Þ.

Assuming that e is small (its precise value is discussed later). Introduce a new col-
lection of points: For odd N=2, put Ai ¼ ðxi; yi; ð�1Þ ieÞ, i ¼ 1; . . . ;N. For even N=2,
put Ai ¼ ðxi; yi; ð�1Þ ieÞ, Ai ¼ ðxi; yi; ð�1Þ iþ1eÞ, i ¼ 1; . . . ;N.

Remark 5.2. Here and in the sequel, given an ordered set of any objects fXigM
i¼1 we

assume that for any k A Z, we have Xk ¼ Xi if k1 i ðmodMÞ.

Consider now two collections of oriented triangles which will form the central part of
the desired virtual polytope.

Figure 5.1
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Case 1. N/2 is odd. Put

JþðeÞ ¼ fTþ
i g

N
i¼1 ¼ fOAiAiþ1gN

i¼1

and

J�ðeÞ ¼ fT�
i g

N
i¼1 ¼ fAiOAiþ1gN

i¼1:

These collections di¤er only by orientation: the normal vectors of Jþ look upwards
whereas the normal vectors of J� look downwards.

Remark 5.3. We indicate an orientation of a triangle in two ways: by indicating its
normal vector x and by the order of its vertices.

Case 2. N/2 is even. Put

JþðeÞ ¼ fTþ
i g

N
i¼1 ¼ fOAiAiþ1gN

i¼1

and

J�ðeÞ ¼ fT�
i g

N
i¼1 ¼ fAiOAiþ1gN

i¼1:

As in the previous case, the normal vectors of the first (respectively, second) col-
lection look upwards (respectively, downwards).

Discrete cross-cap. A general construction. A smooth cross-cap is a smooth oriented
self-intersecting saddle surface with one singular point which looks like the one in
Figure 5.4.

Smooth cross-caps with infinite horn (in terminology of [4], when the singular point
is on infinity) were investigated by A. Verner [25]. Cross-caps with finite horns
were used by Y. Martinez-Maure [10] as a crucial tool for constructing his counter-
example.

A discrete cross-cap consists of four oriented triangles fAPB;DBP;DPC;ACPg
(Figure 5.4). We say that the cross-cap is based on the rectangle ABCD.

Figure 5.4
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Construction of N cross-caps glued to the central parts. Here we construct N cross-
caps based on the rectangles AiAiþN=2Aiþ1AiþN=2þ1 for odd N=2 and on the rec-
tangles AiAiAiþ1Aiþ1 for even N=2.

Case 1. N/2 is odd. Denote n ¼ N=2. Choose another Cartesian coordinate system
ðO 0; u; v;wÞ related to the rectangle AiAiþnAiþ1Aiþnþ1. That is, O 0 ¼ ½AiAiþ1�V
½AiþnAiþnþ1�. The plane w ¼ 0 coincides with the a¤ðAiAiþnAiþ1Aiþnþ1Þ. The direc-
tion of the w axis is chosen to make wðOÞc 0. The v axis is codirected with the vector
AiA
�!

iþn. The u axis is codirected with the vector ð�1Þ i AiA
�!

iþnþ1.
Let Pi ¼ Piðl; dÞ ¼ ðo; d; lÞ. (l is assumed to be big, but the precise values of l and

d will be specified later.) The required cross-cap Ci ¼ Ciðd; lÞ is based on the rectangle
AiAiþ1AiþnAiþnþ1. Namely,

Ci ¼ fAiAiþnPi;Aiþ1AiPi;Aiþnþ1PiAiþn;Aiþnþ1Aiþ1Pig ¼ fSi;R
þ
i ;R

�
i ;S

0
i g:

Case 2. N/2 is even. Choose a Cartesian coordinate system ðO 0u; v;wÞ related to the
rectangle AiAiþ1AiAiþ1. That is, O

0 ¼ ½AiAiþ1�V ½AiAiþ1�. The plane w ¼ 0 coincides
with the a¤ðAiAiþ1AiAiþ1Þ. The direction of the w axis is chosen to make wðOÞc 0.

The v axis is codirected with the vector AiAi

��!
. The u axis is codirected with the vector

ð�1Þ i AiA
�!

iþ1.
Let Pi ¼ Piðl; dÞ ¼ ðo; d; lÞ. (Again, l is assumed to be big.) Consider the cross-cap

Ci ¼ Ciðd; lÞ, based on the rectangle AiAiþ1AiAiþ1. Namely,

Ci ¼ fAiAiPi;Aiþ1AiPi;Aiþ1PiAi;Aiþ1Aiþ1Pig ¼ fSi;R
þ
i ;R

�
i ;S

0
i g:

Figure 5.6 presents two sequential cross-caps. The vectors O 0P
�!

i look in turn up-
wards and downwards.

Note that the normal vectors of Rþ
i look upwards (with respect to the old coordi-

nate system ðx; y; zÞ), whereas the normal vectors of R�
i look downwards. The nor-

mal vectors of triangles Si and S 0
i are horizontal. The triangles Si and S 0

iþ1 have a
mutual edge.

Figure 5.5
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Now consider the union of all the above constructed collections of triangles

fTþ
i g

N
i¼1 U fT�

i g
N
i¼1 U 6

N

i¼1

Ci:

After specifying below the pairs of adjacent triangles, we obtain an embedded sim-
plicial complex which is denoted by C.

Tþ
i is adjacent to Tþ

iþ1, T
þ
i�1 and Rþ

i ; T
�
i is adjacent to T�

iþ1, T
�
i�1 and R�

i ;
Rþ

i is adjacent to Si, S
0
i and Tþ

i ; R
�
i is adjacent to Si, S

0
i and T�

i ;
Si is adjacent to Rþ

i , S
0
i�1 and R�

i ; S
0
i is adjacent to Rþ

i , Siþ1 and R�
i .

Theorem 5.7. For an appropriate choice of e, d, and l, the complex C generates (by
Theorem 3.7) a hyperbolic virtual polytope K with N discrete cross-caps. For N ¼ 4,
the polytope coincides with the example constructed in [11].

Proof. We have already specified the orientations of the triangles. Mark on S2 their
spherical images (which are denoted by the same letters as the triangles) and connect
them by geodesic segments as shown in Figure 5.8, the right part. By Theorem 3.7,
the fan obtained, together with the complex C, yields the desired virtual polytope.
The opposite side of the fan is equal to the front one. Two things should be noted:

1. For a proper choice of e, d, and l, the geodesic lines connecting the vertices of the
fan do not intersect (except for the vertices). This is demonstrated through the pair of
fans (Figure 5.8). The first fan reflects the limit situation as e ! 0 and l ! y (all the
points Tþ

i coincide, and Si ¼ S 0
i . Besides, the angles between TiRi and RiSi are equal

to p=2.) Its edges obviously do not intersect. To obtain a fan of the required type, it
su‰ces to move somewhat the vertices of the first fan. The values of e, d and l can be
easily restored from the fan.

2. The virtual polytope obtained is hyperbolic by Proposition 4.6, since each of its
vertices is nonconvex. r

Figure 5.6
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From above, the polytope K looks like in Figure 5.9.

6 Hyperbolic smoothing

In the present section, we construct a Cy-smooth hyperbolic approximation ~hh of the
support function h ¼ hK of the above virtual polytope K. This is done as follows.

� Step 1 demonstrates that the polyhedral surface FKðxÞ admits a local approxima-
tion of the desired type.

� Step 2 gives a global approximation of the surfaces FKð0; 0;G1Þ.
� Step 3 gives an approximation of FKðxÞ for a horizontal vector x.
� Finally, Step 4 makes all above approximations mutually consistent, i.e., generated
by one and the same smooth function ~hh defined on the sphere.

Remark. In approximating the above polyhedral surfaces, we do not change them at
the points lying far from the edges. Along the edges (but far from the vertices) we
replace the surface either by a cylinder or by a cone.

Figure 5.8

Figure 5.9

New counterexamples to A. D. Alexandrov’s hypothesis 313

(V7 12/1/05 08:41) WDG/G J-1234 Adv. in Geom., 5:2 HC: WSL 10/1/05 Tmath .3.05.05 pp. 301-317 009_P (p. 313)



In particular, this means that contrary to the example given by Y. Martinez-
Maure, the hérisson constructed below has singularities not only at the endpoints of
its horns. Indeed, for each planar, conical, or cylindrical part of the approximating
surface, we have R1R2 ¼ 0.

A cylinder is a set of points that is invariant under all translations parallel to a line
l. A cone with a vertex A is a set of points that is invariant under homotheties with
center in A.

Now we prove the central theorem of the paper.

Theorem 6.1. For any even N ¼ 4; 6; 8; . . . ; there exists a Cy-smooth hyperbolic hér-

isson containing N cross-caps.
By the trick of Martinez-Maure and Pogorelov (Section 1), each such hérisson gen-

erates a counterexample to the hypothesis.

Proof. Step 1. Let F ¼ FKðxÞ for x ¼ ð0; 0; G1Þ. Consider a neighbourhood U of a
vertex A of the surface F . Denote the adjacent edges by L1, L2, and L3, as is shown in
Figure 6.2. Let e be the plane containing L2 and orthogonal to a¤ðL1 UL3Þ. Choose
two planar Cy-smooth convex curves f ¼ f ðAÞ and g ¼ gðAÞ such that f is in-
scribed in eVF and coincides with eVF outside a small neighbourhood of A, and g is
inscribed in ðL1 UL2Þ and coincides with ðL1 UL2Þ outside a small neighbourhood of
A (Figure 6.2).

In the neighbourhood U , we have F ¼ fuðeVF Þ j u is a translation such that
uðAÞ A L1 UL2g. Now replace F (in U) by the smooth surface F ¼ fuð f Þ j u is a
translation such that uðAÞ A gg.

The edges L1, L2, and L3 are replaced by the cylinders c1, c2, and c3. The cylinders
c1 and c3 are determined by the choice of f . The cylinder c2 is determined by the
choice of g.

Step 2. In constructing a global approximation of F ¼ FKð0; 0;G1Þ, we must take
into account the dependence between g and f for di¤erent vertices: for adjacent ver-
tices A1;2, we must construct the same cylinders approximating the edge A1A2.

Figure 6.2
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The following simple scheme shows that there exists a global choice of g and f for
all vertices, which yields a global approximation of F and demonstrates freedom of
choice.

1. We may choose independently g and f for all Rþ
i .

2. Now, f ðTiÞ is determined by f ðRþ
i Þ and gðTiÞ is determined by f ðRþ

iþ1Þ.
This gives us an approximation of h everywhere on the sphere except for a neigh-

bourhood of the horizontal circle. Moreover, we are free to choose independently any
(su‰ciently narrow) cylinders, which replace SiR

G
i and S 0

i R
G
i .

Step 3. Consider a horizontal vector x such that the hemisphere with the pole x con-
tains the edge S 0

i Siþ1 for certain i. Consider the surface F ¼ FKðxÞ in a neighbour-
hood U of the point A that corresponds to S 0

i . Denote the adjacent edges by L1, L2,
and L3. We have already a smooth approximation of F along the edges L1 and L2,
which comes from Steps 1 and 2, but unlike the previous case, the edges are ap-
proximated by cones with vertices at the point A.

As in Step 1, we consider the plane e containing L2 and orthogonal to a¤ðL1 UL3Þ.
Unlike Step 1, the sections of F parallel to e will be chosen not equal but homothetic.
We replace F (in the neighbourhood U) by the smooth surface F ¼ fLkðuX ð f ÞÞ j u is
a translation such that uðAÞ A gg.

Lk is a homothety with the origin uðAÞ and the coe‰cient k ¼ kðuÞ.
g is a smooth curve inscribed in L1 UL2. Here is the precise construction.
Assume for simplicity that in a coordinate system ðu; v;wÞ (Figure 6.3), we have

a¤ðL1;L3Þ is the plane w ¼ 0; A ¼ ð0; 0; 0Þ;

L1 UL3 ¼ fðu; v; 0Þ j juj ¼ vg; L2 ¼ fð0; v;wÞ j 0c v ¼ �wg:

Choose two Cy-smooth functions f and k such that the convex graphs of k and f

are inscribed in the graphs of the functions v ¼ juj and v ¼ � uþjuj
2 respectively. Note

that for any constant C, the function f can be chosen so that the condition f 00 0 0
implies f dCf 0. Put

Fðu; vÞ ¼ kðuÞ f v

kðuÞ � 1

� �
:

Figure 6.3
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The graph of the function F is the desired smooth hyperbolic local approximation.
The edges L1 and L3 are approximated by cones (determined by the choice of f ),
whereas L2 is approximated by a cylinder (determined by the choice of k).

Ordinary calculations that check hyperbolicity show that

det
F 00

uuðu; vÞ F 00
uvðu; vÞ

F 00
vuðu; vÞ F 00

vv ðu; vÞ

� �

¼ k 00ðuÞ
k2ðuÞ f

00 v

kðuÞ � 1

� �
kðuÞ f v

kðuÞ � 1

� �
� f 0 v

kðuÞ � 1

� �
v

� �
c 0:

Indeed, if f 00 v
kðuÞ � 1
� �

¼ 0, the inequality is obviously valid. If f 00 v
kðuÞ � 1
� �

0 0 and

k 00 0 0, then k and v are bounded above and below by some positive numbers.
Therefore, for a proper choice of f , we have

kðuÞ f v

kðuÞ � 1

� �
� f 0 v

kðuÞ � 1

� �
vd 0;

which, together with k 00ðuÞ f 00 v
kðuÞ � 1
� �

c 0, implies the required inequality.

Analogously to the previous step, the function k determines a cylinder that ap-
proximates the edge L2. Construct now an approximation of the surface in a neigh-
bourhood of Siþ1 with the same cylinder for L2.

Step 4. Consider a narrow belt about the horizontal great circle S1 HS2. By Step 3,
construct a smooth hyperbolic approximation of hK in the belt such that the edges
RG

i Si and RG
i S

0
i are approximated by cones. Passing to F ¼ FKðð0; 0;G1ÞÞ, we ob-

tain cylindrical approximations of the edges RG
i Si and RG

i S
0
i . By Step 2, this can be

extended to a global approximation of F , which yields a global smooth hyperbolic
approximation of hK. r
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(Basel ) 72 (1999), 444–453. MR1687504 (2000c:52012)
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