
DOI: 10.2478/s11533-006-0006-9
Research article

On hyperbolic virtual polytopes and hyperbolic fans

Gaiane Panina∗

Institute for Informatics and Automation,
St.Petersburg, 199178, Russia

Received 11 March 20005; accepted 30 December 2005

Abstract: Hyperbolic virtual polytopes arose originally as polytopal versions of
counterexamples to the following A.D.Alexandrov’s uniqueness conjecture:
Let K ⊂ R

3 be a smooth convex body. If for a constant C, at every point of ∂K, we have
R1 ≤ C ≤ R2 then K is a ball. (R1 and R2 stand for the principal curvature radii of ∂K.)
This paper gives a new (in comparison with the previous construction by Y.Martinez-Maure and
by G.Panina) series of counterexamples to the conjecture. In particular, a hyperbolic virtual
polytope (and therefore, a hyperbolic hérisson) with odd an number of horns is constructed.
Moreover, various properties of hyperbolic virtual polytopes and their fans are discussed.
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1 Introduction

In this paper, we study hyperbolic virtual polytopes. Figuratively speaking, hyperbolic

virtual polytopes relate to the convex ones in the same way as convex surfaces relate to

saddle ones. As is known, there exists no closed saddle polytopal surface. Still, non-trivial

hyperbolic virtual polytopes do exist and this is probably the most remarkable fact known

about them. Non-trivial hyperbolic virtual polytopes appeared originally as an auxillary

construction for various counterexamples to the following A.D.Alexandrov’s uniqueness

hypothesis:

Let K ⊂ R
3 be a smooth convex body. If for a constant C, in each point of ∂K, we

have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the principal curvature radii
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of ∂K).

For a long time mathematicians were certain about the correctness of the hypothesis,

but obtained only some partial results. Recently, Y.Martinez-Maure [5] has given a coun-

terexample. First, he demonstrated that each smooth hyperbolic hérisson (see Section 2)

generates a desired counterexample. Next, he presented such an example (see Fig. 1). It

is a smooth hyperbolic surface with four horns (i.e., points where the surface is neither

hyperbolic no smooth), given by an explicit formula.

Surprisingly, this counterexample proved to be not unique: a series of counterexamples

was given by the author of the paper (see [9]). Using a different technique, she constructed

smooth hyperbolic hérissons with any even number of horns greater than 4. The present

paper continues this study and demonstrates that they are even more various.

The paper is organized as follows. Sections 2 and 3 give necessary definitions and ex-

amples of virtual polytopes (which are, roughly speaking, Minkowski differences of convex

polytopes). In addition, Section 2 recalls briefly the notion of hérissons (i.e., Minkowski

differences of smooth convex bodies). The definition of hyperbolic virtual polytopes (i.e.,

virtual polytopes such that the graph of the support function is a saddle surface) are pre-

sented in Section 4. Convex poytopes and hyperbolic polytopes are compared in Theorem

4.4.

Section 5 studies the fans of simplicial hyperbolic virtual polytopes. The edges of

such a fan admit a proper coloring, which encodes important properties of the virtual

polytope. For instance, a cell of the fan corresponds to a horn of the polytope, if and

only if the color changes twice as while going around the cell (Theorem 5.3).

Theorem 5.7 demonstrates a way of adding a new horn to a hyperbolic polytope.

This is called a C-operation (or a S-operation) and arises from some special refinement

of the fan of the original polytope. This trick is used in Section 6, which gives advanced

examples of hyperbolic virtual polytopes, in particular, with an odd number of horns.

Note that it is impossible to add a horn to any hyperbolic polytope known before ([6]

and [9]), so we have to construct new ones.

Hyperbolic virtual polytopes can be classified in a reasonable way by the number of

horns. However, there exists a finer classification since each hyperbolic polytope gener-

ates in a natural way an arrangement of oriented great semicircles (each horn gives a

semicircle). We are bound by the case when the semicircles (and therefore, the horns)

admit a natural ordering. This allows us to assign to a polytope K a necklace (i.e., a

circular sequence) consisting of N signs ” + ” and ” − ” (N stands for the number of

horns).

By Theorem 6.1, each necklace with more than three changes of sign is realizable as

a hyperbolic polytope.

Much room is left here for further study: applying C- and S-operations one can

obtain further types of hyperbolic polytopes, in particular, with new combinatorial type

of semicircle arrangement. However, we leave this beyond the paper.

In Section 7, we show that each polytope constructed in Section 6 admits a hyperbolic

smoothing and therefore yields a counterexample to the A.D. Alexandrov’s hypothesis.
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As in [9], we smooth not the surface of the virtual polytope, but the collection of graphs

of its support function.

2 Virtual polytopes and hérissons: basic notations.

Virtual polytopes (introduced by A.Pukhlikov, A.Khovanskii [4], appeared also in a nat-

ural way in P.McMullen’s polytope algebras [7]) and can be represented in four different

ways.

• Virtual polytopes are elements of the Grothendieck group of the semigroup of convex

polytopes P in R
n equipped with the Minkowski addition ⊗. I.e., they are formal

expressions of type K ⊗ L−1, where K,L ∈ P.

• Virtual polytopes are polytopal functions (Definition 2.2), i.e., finite linear combina-

tions of characteristic functions of convex polytopes. So it makes sense to speak of

the value of a polytope K at a point X ∈ R
n.

• Virtual polytopes are defined by their support functions, i.e., piecewise linear posi-

tively homogeneous functions defined on R
n (Definition 2.3).

• A virtual polytope is a pair of type (a closed polytopal surface in R
n with cooriented

facets; a spherical fan) (see Theorem 2.10).

We now give a detailed explanation of the items (restricting ourselves to dimension

n = 3).

Denote by P the set of all compact convex polytopes in R
n (degenerate polytopes are

also included). It is a semigroup with respect to the Minkowski addition ⊗.

Denote by P∗ the Grothendieck group of P. The element of P∗ that is inverse to K

is denoted by K−1.

A function F : R
3 → Z is polytopal if it admits a representation of the form

F =
∑

i

aiIKi
,

where ai ∈ Z, Ki ∈ P, and IKi
is the indicator function of the polytope Ki:

IKi
(x) =

{
1 if x ∈ Ki,

0 otherwise.

The set of all polytopal functions M is endowed with two ring operations. The role

of addition is played by the pointwise addition, denoted by +. The multiplication is

generated by ⊗ and is denoted by the same symbol.

The unit element of the ring M is obviously the function E = I{O}.
Identifying convex compact polytopes with their indicator functions, we get an inclu-

sion π : P ⊂ M. Keeping this identification in mind, we write for convenience K instead

of IK .

Due to the following theorem, all elements of the semigroup π(P) are invertible in M.

Theorem 2.1. (On Minkowski inversion) [4]
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For any convex polytope K, we have

(−1)dim KIRelint(sK) ⊗ K = E,

where s is the central symmetry mapping (with respect to the origin O) , Relint(sK) is

the relative interior of the polytope sK (i.e., the interior taken in the affine hull of K).

Hence the inclusion P ⊂ M induces an inclusion P∗ ⊂ M.

Definition 2.2. The image of the latter inclusion is called the group of virtual polytopes.

For convenience we denote it by the same letter P∗.

Definition 2.3. Let K be a virtual polytope. Then there exists convex polytopes L and

M such that K = L⊗M−1. The support function hK of the virtual polytope K is defined

to be the pointwise difference of support functions of L and M :

hK = hL − hM .

Remark 2.4. Recall that the support function of a convex polytope is piecewise linear

with respect to a fan. By a fan we mean a splitting of R
n in a union of polytopal cones with

a common apex at O. In the sequel, we sometimes speak of (and draw) the intersection of

the fan with the unite sphere Sn−1 centered at O. Thus, the cones correspond to spherical

polytopes (spherical cells).

Definition 2.5. [8] Let K =
∑

i aiKi with Ki ∈ P. Let ei(ξ) be the support hyperplane

to Ki with the outer normal vector ξ. The polytope Kξ
i = Ki ∩ ei(ξ) is called the face of

the polytope Ki with the normal vector ξ, whereas the polytopal function Kξ =
∑

i aiK
ξ
i is

called the face of the polytopal function K with the normal vector ξ.

A face of a virtual polytope is a virtual polytope as well. The 0-dimensional, 1-

dimensional and 2-dimensional faces are called vertices, edges and facets respectively.

(By the dimension of a virtual polytope we mean the dimension of the affine hull of its

support.)

Similarly to faces of convex polytopes, virtual faces behave linearly with respect to

the Minkowski addition:

Theorem 2.6. [8] In the above notation,

Kξ
1 ⊗ Kξ

2 = (K1 ⊗ K2)
ξ.

Definition 2.7. A point X is called a boundary point of a polytope K, if x ∈ cl(supp(Kξ))

for some ξ ∈ S2 such that ξ is not orthogonal to aff(K). (cl denotes the closure.)

Definition 2.8. A fan Σ is a finite collection of compact spherical polytopes on the unit

sphere S2 (possibly nonconvex ones) such that

• U, V ∈ Σ ⇒ U ∩ V ∈ Σ;
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• ⋃
Σ U = S2;

• U �= V ∈ Σ ⇒ RelintU ∩ RelintV = ∅.

The fan of a virtual polytope is defined below analogously to the classical definition

of the outer normal fan.

Definition 2.9. For a virtual polytope K ∈ P∗, its fan ΣK is the collection of spherically

polytopal sets {ΣK(ν)}, where ν ranges over the set of faces of K, and

ΣK(ν) = cl({ξ|Kξ = ν})
(cl denotes the closure.)

These polytopal sets are called the cells of the fan. Similarly to the convex case, the

support function of K is linear on each cell of ΣK . And similarly to convex polytopes, the

fan of a virtual polytope K can be defined as the minimal fan for which hK is linear on

each cell. In addition, we have the usual duality: k-dimensional cells of ΣK correspond

to (3 − k − 1)-dimensional faces of K.

The 0-dimensional cells are called the vertices of the fan.

From now on, we assume that n = 3, and deal with 3-dimensional virtual polytopes.

A virtual polytope is said to be simplicial if each of its facets is a virtual triangle

(see Section 3). Each simplicial virtual polytope K yields in a natural way a sphere-

homeomorphic simplicial complex CK which is generated by the collection of triangles

{cl(supp(Kξ))| ξ ∈ S2; dim(Kξ) = 2}.
Alternatively, given a simplicial complex C, it is sometimes possible to associate with

C a virtual polytope. Moreover, sometimes it is possible to associate many different vir-

tual polytopes (see Figure 5). The general construction is given in the following theorem.

Theorem 2.10. Construction of a virtual polytope related to an immersed

simplicial complex [8, 9].

Let C be a closed sphere-homeomorphic immersed (with possible self-intersections) in

R
3 simplicial complex generated by a set of triangles {Ti}.

Suppose there exists a collection of normal vectors ξi of the triangles Ti and a spherical

fan Σ with vertices in {ξi} satisfying the two conditions:

main condition The combinatorics of Σ is dual to that of C . (In particular, ξi and

ξj are connected by an edge of Σ if and only if Ti and Tj share an edge in C.)

condition for complexes with parallel adjacent facets If two adjacent facets Ti

and Tj of the complex are parallel (and therefore, have opposite normal vectors ξi and

ξj), then the points ξi and ξj are connected by an edge (respectively, edges) of ΣK,

which is orthogonal to the mutual edge (respectively, mutual edges) of the facets.

Then there exists a virtual polytope K such that

• the set of {cl(supp(Kξ))| ξ ∈ S2; dim(Kξ) = 2} coincides with the set {Ti}, and

• ΣK = Σ.

Remark 2.11. Given a virtual polytope K in R
3 = (x, y, z), the vertices of the associated
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complex CK can be restored by the support function h = hK as follows. Let a vertex A

of CK correspond by duality to a cell α of the fan ΣK . Then A = ((h|α)′x, (h|α)′y, (h|α)′z),
where h|α is the restriction of h to the cell α.

Similar geometric realization of Minkowski differences of smooth convex bodies makes

sense as well. It can be traced in the early paper [1] by A.D. Alexandrov. Let h : S2 → R

be a smooth function. By the hérisson H with the support function h (see [11]), we

mean the envelope of the family of planes {eH(ξ)}ξ∈S2 , where the plane eH(ξ) is defined

by the equation

(x, ξ) = h(ξ).

It is a sphere-homeomorphic surface with possible self-intersections and self-overlapings.

We say that a hérisson H is smooth if its support function is smooth.

As a set of points, a hérisson H coincides with the image of the mapping

φ : S2 −→ R
3,

(x, y, z) −→ (h′
x(x, y, z), h′

y(x, y, z), h′
z(x, y, z)).

Analogously to the classical convex case, the principal curvature radii R1 and R2 of a

hérisson H at a point ξ ∈ S2 (or at the point φ(ξ) ∈ H) are the eigenvalues of the matrix

⎛

⎜⎝
h′′

xx(ξ) h′′
xy(ξ)

h′′
yx(ξ) h′′

yy(ξ)

⎞

⎟⎠ .

(ξ is codirected with the z axis.)

Although the support function of a hérisson is smooth, the hérisson itself (regarded

as a surface) may have singular points. They appear whenever R1R2 = 0.

If R1R2 �= 0, the hérisson B is a smooth surface in a neighbourhood of φ(ξ) and the

radii R1 and R2 coincide with the principal curvature radii of the surface H.

Martinez-Maure observed that a body K together with a constant C give a counterex-

ample to A.D. Alexandrov’s hypothesis if and only if the hérisson K ⊗B−1
C is hyperbolic,

i.e., R1R2 ≤ 0 everywhere (BC stands for a ball of radiuce C). An example of a hy-

perbolic hérisson presented by Martinez-Maure [5] is a surface (see Fig. 1) obtained by

gluing together graphs of two explicitly given functions.

3 Examples of virtual polytopes

1. One-dimensional virtual polytopes are not various. A virtual segment is either a

regular convex segment or an inverse to a convex segment. By Theorem 2.1, the latter is

a polytopal function admitting the value −1 strictly inside a segment and admitting the

value 0 outside it and at the endpoints.

2. Two-dimensional virtual polytopes are much more various. We list below all types

of virtual triangles (i.e., virtual polytopes possessing 3 edges and therefore, 3 vertices).
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Fig. 1

1 1

1

a regular segment

0 0

– 1

inverse to a regular segment

Fig. 2

In the figure we indicate the values of the polytopal function and the coorientations of

the edges. For instance, the second figure means that the polytopal function admits the

value −1 strictly inside the triangle and inside the side edges. At the vertices and on the

horizontal edge, the function equals 0.

1

11

1

1

11

0

00

–1

0

–1–1

1

00

1

–1

00

0

00

1

0

00

Fig. 3

The virtual polytope in Fig. 4 is not a triangle but a hexangle though the closure of

its support is a triangle (similarly to the above virtual triangles). The point is that each

of the three segments that serve as edges is taken twice with both coorientations.

0

00

–2

–1

–1
–1

Fig. 4

3. Some virtual tetrahedra. A hyperbolic tetrahedron. It would take too much
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space to list all 3-dimensional virtual tetrahedrons (i.e., virtual polytopes with 3 facets).

Instead we draw some of them to further illustrate the theorems. This time we do not

indicate the values of the polytopal functions. Instead, we show the coorientations of

the facets by normal vectors and draw the fans (keeping in mind Theorem 2.10). It is

possible to restore the values of the polytopal function owing the methods of [8].

+ =
convex

tetrahedron

+ =
hyperbolic
tetrahedron

+

Fig. 5

The above hyperbolic tetrahedron is of particular interest. It is the simplest non-trivial

example of a hyperbolic polytope.

4 Hyperbolic virtual polytopes: definition and properties

Let K be a virtual polytope and let h = hK be its support function. For ξ ∈ S2, let

e(ξ) be the plane defined by the equation (x, ξ) = 1. Consider the restriction of h to

the plane e(ξ) and denote by F = FK(ξ) the graph of the restriction. The surface F is

piecewise linear. Its vertices and edges correspond to those of ΣK intersected with the

open hemisphere with the pole at ξ.

Note that the virtual polytope K is convex if and only if the surface FK(ξ) is convex
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for any ξ. This motivates the following definition.

Definition 4.1. A virtual polytope K is called hyperbolic if FK(ξ) is a saddle surface for

any ξ ∈ S2. In the sequel, we call such virtual polytopes simply hyperbolic polytopes.

Recall that a piecewise linear (or any other non-smooth surface) F is called a saddle

surface if there is no plane cutting a bounded connected component off F (see [3]).

The polytopal complex CK generated by a hyperbolic polytope K is not a saddle

surface (for there exists no closed saddle surface). Some of its vertices can be cut off the

surface by a plane. Such vertices are called horns of the hyperbolic polytope K.

This preserves the traditional notation of the theory of smooth narrowing saddle

surfaces, which deals with infinite horns (see [3] and [13]).

Let Ξ = {ξi} be a collection of points on S2 such that each open hemisphere contains

at least one point from the collection.

Proposition 4.2. [9] A virtual polytope K is hyperbolic if and only if FK(ξ) is a saddle

surface for any ξ ∈ Ξ. In this case, FK(ξ) is saddle for any other ξ ∈ S2 as well.

Definition 4.3. [9]

A vertex ξ of a fan Σ is nonconvex (respectively, convex) if there exists (respectively,

doesn’t exist) an adjacent to ξ angle greater than π (Fig. 6).

Fig. 6

Denote by Hyp the set of all hyperbolic virtual polytopes. Also put

Conv = {K ∈ P∗| either K or K−1 is a convex polytope}.
The following theorem compares these sets and demonstrates their contraposition.

Theorem 4.4. (1) K ∈ Conv if and only if all non-boundary values of its facets are

non-negative; K ∈ Hyp if and only if all non-boundary values of its facets are non-

positive.

(2) K ∈ Conv ∪ Hyp ⇔
the coorientations of the facets of K generate a global orientation of CK .

(3) Let K be a simplicial virtual polytope (i.e., all its facets are virtual triangles). Then

K ∈ Conv if and only if every vertex of its fan ΣK is convex; K ∈ Hyp if and only

if every vertex of its fan ΣK is nonconvex.
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The above examples of virtual tetrahedrons (Fig. 5) give a good illustration of the

assertions. To prove the theorem, we need two auxiliary lemmas.

Lemma 4.5. Let K be a 2-dimensional virtual polytope (embedded in R
3). K is hyperbolic

if and only if all its values at non-boundary points are non-positive.

Proof. The fan of K is symmetric and has 2 vertices. Therefore, it suffices to consider

the surface F = FK(ξ) for ξ ⊥ aff(K). It is a piecewise linear cone. Let e be a plane

containing its apex A. By duality, e corresponds to a point E from the plane k = aff(K).

The point E is a non-boundary point of K if and only if the plane e does not contain

edges of F .

The assertion of the lemma easily follows from the equality

Kξ(E) = 1 + χ(e ∩ F ∩ U(A)),

where U(A) = {x ∈ R
3 | 0 �= |x,A| < ε} is a deleted neighbourhood of A, F is the

subgraph of the restriction of hK on the plane e, χ stands for the Euler characteristic.

Indeed, the surface F is saddle if and only if there exists a plane e such that e∩F =

{A}, which means K(E) = 1.

Now prove the equality.

−χ(e ∩ F ∩ U(A)) =

by duality,

#({l | l ⊂ k is an oriented line, E ∈ l; l is a support line to K})/2 =

1 − K(E).

The latter equality is well-known for convex polytopes. Owing to linearity, it also is valid

for virtual polytopes. �

Lemma 4.6. Let K be a virtual polytope. Suppose a point X is a non-boundary point of

its facet Kξ. Suppose in addition that X /∈ aff(Kη) for all η �= ξ. Move somewhat the

point X in the direction ξ (respectively, −ξ) and obtain the point X+ (respectively, X−).

In this notation, we have

Kξ(X) = K(M−) − K(M+).

Proof. The assertion follows directly from [8], Section 1. �

Now prove the theorem. The first assertion follows from Lemma 4.5. Indeed, for a

virtual polytope K, the surface FK(ξ) coincides in a neighbourhood of its vertex A with

the surface FKA(ξ), where KA is the facet of K that corresponds to the vertex A.

It remains to observe that if F is non-saddle, there exists a plane cutting off a bounded

component containing exactly one vertex of F .
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2. A virtual polytope K can be regarded as a cycle (recall that K is a polytopal

function, i.e., a linear combination of convex polytopes). The winding number of the

polytopal surface CK at a point X coincides with the value K(X) provided that X is

a non-boundary point of K. Let η denote the coorientation of CK regarded as a cycle,

whereas ξi denote the orientations of the facets of K (according to Definition 2.5). By

Lemma 4.6, if η coincides with (respectively, is opposite to) ξi, then all non-boundary

values of Kξi are non-negative (respectively, non-positive).

3.The third assertion is trivial. �

5 Hyperbolic fans

In the section, all virtual polytopes (respectively, fans) are assumed to be simplicial

(respectively, simple). Let K be a hyperbolic polytope with a fan ΣK and a support

function hK . The edges of ΣK admit the following natural coloring: we color an edge of

ΣK red (respectively, blue), if the graph FK(ξ) of hK is concave up (respectively, concave

down) in a neighbourhood of an inner point of the edge.

(We assume that the edge intersects with the hemisphere with the pole ξ.)

This construction is correct: the color does not depend on the choice of ξ.

Remark 5.1. For a hyperbolic K, the three edges adjacent to a vertex of ΣK can be

colored only as is shown in Fig. 7.

Fig. 7

Definition 5.2. A fan Σ is hyperbolic, if each of its vertex is nonconvex.

A hyperbolic fan Σ (which possibly is not a fan of a virtual polytope) is proper, if its

edges admit a coloring such that the adjacent edges to every of its vertices are colored as

in Fig. 7.

Given a hyperbolic fan, either there is no proper coloring or just two opposite ones.

The below figure gives an example of a non-proper hyperbolic fan.

Theorem 5.3. Let K be a simplicial hyperbolic polytope with a fan ΣK. For a 2-

dimensional cell α of ΣK, denote by S(α) the number of color changes as going around

the boundary of the cell. The following assertions are valid:
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Fig. 8

1. S(α) = 2 if and only if α corresponds by duality to a horn.

2. S(α) = 2 implies that α contains a great semicircle (not vise versa!).

3. S(α) = 0 implies that K is a virtual triangle or a virtual segment.

4.
∑

α[S(α) − 4] = −8.

Proof. Denote by h the support function of K.

Prove 1 and 2. Let A be a horn of the virtual polytope K. Let a Cartesian coordinate

system (x, y, z) be chosen so that the vertex A = (0, 0, 0) of the virtual polytope K can

be cut off by the plane z = −ε for a small ε > 0.

This means (by Remark 2.11) that h′
x = h′

y = h′
z = 0 on the cell α, whereas h′

z ≤ 0

on neighbour to α cells.

Consider the restriction of h to a plane e(ξ) such that the z axis is orthogonal to ξ.

Let α = α ⊂ e(ξ) be the polygon which corresponds to the cell α (i.e., the intersection

of e(ξ) with the cone built over α. For a vertex X of α, three cases are possible (see Fig.

9):

a. Two red edges adjacent to X admit a one-sheet orthogonal projection on z⊥. The

polygon α lies beneath the red edges.

b. Two blue edges adjacent to X admit a one-sheet orthogonal projection on z⊥. The

polygon α lies over the blue edges.

c. Locally, α lies between a blue and a red edges that have the same projection on

z⊥.

Assume that dimK = 3. Altering the vector ξ, make the plane e(ξ) contain a vertex

X of α of the type c. Let s be a ray with the apex at the point X which locally lies in

α. Then s is contained in α.

Treating similarly other planes e(ξ) (such that ξ is orthogonal to z), we conclude that

the color changes twice as going around α and that α contains a great semicircle.

Alternatively, let K be a hyperbolic polytope and let the color change twice as going

around a cell α of ΣK . Let α correspond by duality to a vertex A. For the above choice

of coordinate system, the polytope α looks locally as shown in Fig. 9. In each of these

three cases, we have h′
z ≤ 0 in a neighbourhood of the cell α. Since h′

z = 0 on α, there

exists a plane cutting a bounded component with the vertex A off the complex CK , i.e.,

A is a horn.
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z

a
X

z

aX

z

X

a

a)

b)

c)

Fig. 9

3. Suppose S(α) = 0. Then each angle of the spherical polygon α is greater than

π. This means that either α is a spherical 2-gons or S2 \ α is contained in an open

hemisphere, which is impossible.

4.We follow the proof of the Cauchy Lemma (see [2]). Denote by V and F the number

of vertices and the number of 2-dimensional cells of ΣK . Count the total number of color

changes for all cells. Since each vertex gives exactly two changes, we have
∑

α S(α) = 2V.

Applying the Euler formula 2F = V + 4, we conclude the proof. �

Definition 5.4. We say that two proper hyperbolic fans are combinatorially equivalent

if there exist proper colorings of both of them together with a combinatorial equivalence

that preserves the colors of the edges.

Definition 5.5. We say that a hyperbolic fan Σ is realizable (respectively, combinatorially

realizable) if there exists a hyperbolic polytope K such that ΣK = Σ (respectively, Σ is

combinatorially equivalent to ΣK).

Given one realizable fan, we sometimes can obtain many others. The operations

described below change the combinatorics of a fan but preserve combinatorial realizability.

Proposition 5.6. Let Σ be a realizable hyperbolic fan. Suppose two inner points of some
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red (respectively, blue) edges can be connected by a geodesic segment avoiding intersections

with other edges. Then breaking somewhat these red (respectively, blue) edges, coloring

this segment blue (respectively, red), and adding it to Σ, we obtain a combinatorially

realizable hyperbolic fan. This is called H-operation.

H-operation

Fig. 10

Proof. Let a virtual polytope K correspond to the fan Σ. For a fixed vector ξ, consider

the surface FK(ξ). Let the new segment s belong to a cell α, which corresponds to the

facet A of the surface FK(ξ). Put a = aff(A). Now break the plane a along the segment

s to obtain a concave down (respectively, concave up) surface. Owing to simplicity of the

fan, replacment of a by the broken plane causes no harm to the combinatorics at adjacent

vertices. This gives a saddle surface with the desired combinatorics. Alter the surfaces

FK(ξ) for other vectors ξ to get a self-consistent collection of surfaces. This corresponds

to a hyperbolic polytope of the desired type. �

Not all hyperbolic polytopes allow an H-operation. For instance, the hyperbolic

tetrahedron (Fig. 5) allows no H-operation.

We shall apply H-operations in Section 6 for shortening the edges of hyperbolic fans,

which is necessary for further smoothing.

Theorem 5.7. Let K be a hyperbolic polytope. Suppose that one of the below described

C- or S- configurations of four geodesic segments 1, 2, 3, and 4 can be placed on S2 (see

Fig. 11) such that

• The endpoints of 1 and 4 of C-configuration (respectively, S-configuration) lie on

edges of ΣK of different (respectively, one and the same )color.

• Intersections of the configuration with the edges of ΣK are avoided (except for the

endpoints of 1 and 4).

• Segments 2 and 3 are great semicircles.

• The vertices of the configuration are nonconvex.

• Segments 1 and 4 lie on one and the same great circle.

Then after an appropriate coloring and adding this configuration to ΣK, we obtain a

combinatorially realizable fan. This is called C-operation (respectively, S-operation).

Proof. Consider the surface FK(ξ) for a fixed vector ξ. Denote by a its face correspond-

ing to the cell of ΣK which contains the S-configuration (respectively, C-configuration).



G. Panina / Central European Journal of Mathematics

adding
a -configurationC
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adding
a -configurationS
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4
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Fig. 11

Replace the affine hull of a by a polyhedral surface (consisting of three linear parts) as is

shown in Fig. 12. The affine hulls of other faces remain unchanged.

x

FK(x) F K(x)'

x

Fig. 12

Thus we obtain a new saddle surface F ′
K(ξ) for the fixed vector ξ. Altering the

surfaces FK(ξ) for other planes ξ, we obtain a self-consistent collection of saddle surfaces,

and therefore, a hyperbolic polytope of the desired type. �
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An easy calculation of color changes (according to Theorem 5.3) proves the following

proposition.

Proposition 5.8.

• For a 3-dimensional hyperbolic polytope, H-operations never change the number of

horns.

• C-operation (respectively, S-operation) doesn’t change the number of horns if the C-

configuration (respectively, S-configuration) is contained in a cell corresponding to

a horn.

• Otherwise , C-operation (or S-operation) adds one horn.

It is often impossible to add a horn by a C- or a S -operation to a hyperbolic polytope

K. Indeed, there must exist a cell of ΣK containing a great semicircle but not corre-

sponding to a horn of K. For instance, neither the hyperbolic polytope from [5], nor

those from [9] possess this property.

6 Advanced examples: hyperbolic polytopes with even and

odd number of horns

Let K be a simplicial hyperbolic polytope. Let α1, ...αN be the cells of ΣK such that for

each k, the color changes twice as going around the boundary of αk. (Recall that each

such cell corresponds by duality to a horn.) By Theorem 5.3, each cell αk contains an

oriented great semicircle, say, Sk. Its orientation is generated by the coloring. Arrange-

ments of great semicircles on S2 may have a complicated structure. Their combinatorial

classification is a separate problem (not to be discussed here). In this paper, we bound

ourselves by simple combinatorics of {Si}N
i=1.

Horns ordering property. Let K be a hyperbolic polytope.

K is said to possess the horns ordering property, if. there exists a hemisphere S2
+

and a circular ordering of the set {Si}N
i=1 (and therefore, the same ordering of {αi}N

i=1 )

satisfying the following two conditions.

1. For each i, the prolongation of the great semicircle Si in S2
+ first meets the semicircle

Si+1.

2. For each i, the prolongation of the great semicircle Si in S2 \ S2
+ first meets the

semicircle Si−1.

In the section, all hyperbolic polytopes constructed possess this property.

Denote by S the boundary of S2
+. Choose an orientation of S and mark the cells αk

by a sign ” + ” or ” − ” as follows: if S first meets a red edge of αK , then assign to αk

the sign ” + ”. Otherwise, we assign the sign ” − ” (see Fig. 14).

Thus we obtain a necklace (i.e., a circular sequence) of N signs N (K) = (± ± ...±)

which is defined up to the order inversion combined with the sign inversion (this combi-

nation is motivated by the orientation changing of S).

The example from [5] gives the necklace (+ − +−). The examples from [9] give the

necklace of type (+ − + − ... + −) for even number N ≥ 4 of signs.

However, the set of realizable necklaces is much more diverse:
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Theorem 6.1. Suppose the sign changes at least 4 times as going around a necklace

N = (±± ...±). Then there exists a hyperbolic virtual polytope K such that N (K) = N .

Proof. Step 1. New hyperbolic polytope of type (+ − +−).

Assuming that a coordinate system (x, y, z) is fixed, consider the collection of points

{Ai, Pi, O}4
i=1 as shown in Fig. 15.

y

x

P4(– )�

P3( )�
P2(– )�

P1( )�

T3

T4

T1

T2

A4(– )�

A1( )�

A2(– )�

A3( )�

O

z

y

x

a sideview

Fig. 15
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The x and y coordinates of the points can be read from the grid, whereas the z

coordinates are indicated in the brackets. For instance, A1 = (3, 3, ε). The values δ > 0

and ε > 0 are chosen below.

The collection of oriented triangles

Si = (AiAi+1O), Ti = (Ai+1AiPi),

S ′
i = (Ai+1AiO), T ′

i = (AiAi+1Pi)

forms a simplicial complex C. The pairs of triangles Si and S ′
I (as well as Ti and T ′

i ) differ

only by orientation: the normal vectors of Si and Ti look upwards (i.e., form an angle

with the z axis less than π/2), whereas the normal vectors of S ′
i and T ′

i look downwards

(i.e., form an angle with the z axis greater than π/2).

Remark 6.2. We indicate the orientation of a triangle in two ways: by its normal vector

ξ and by the order of its vertices.

Remark 6.3. Here and in the sequel, given an ordered set of any objects {Xi}M
i=1, we

assume that for any k ∈ Z, we have Xk = Xi if k ≡ i(modM).

Keeping in mind Theorem 2.10, mark on the sphere S2 the endpoints of the normal

vectors of the triangles (we denote them by the same letters). For an appropriate choice

of the numbers δ and ε (for instance, the values ε = 0, 1 and δ = 0, 4 are suitable), the

geodesic segments connecting the points (see Fig. 16) do not intersect each other (except

for the marked points). The complex C together with the fan obtained gives a hyperbolic

polytope K4.

To adjust it for further smoothing (Section 7), apply four H-operations and obtain

the fan Σ′
4 (Fig. 16). By Theorems 4.4 and 5.3, this yields a hyperbolic polytope K ′

4 with

4 horns (namely, the points Pi), which differs from that constructed in [5]: their fans are

not combinatorially equivalent although they contain the same number of vertices and

edges.

Step 2. New hyperbolic polytopes of type (+ − ... + −) with even number

of horns.

On this step, we take a star with N vertices (as defined in [9]) instead of the four

points A1, ..., A4 and follow the pattern of Step 1. Again, the z coordinates of the points

are indicated in the brackets.

The collection of oriented triangles

Si = (AiAi+1O), Ti = (Ai+1AiPi),

S ′
i = (Ai+1AiO), T ′

i = (AiAi+1Pi)

form a simplicial complex C. As on the Step 1, the pairs of triangles Si and S ′
I (as well

as Ti and T ′
i ) differ only by orientation: the normal vectors of Si and Ti look upwards,

whereas the normal vectors of S ′
i and T ′

i look downwards.
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As above,we mark on the sphere S2 the endpoints of the normal vectors of the triangles

(we denote them by the same letters). For an appropriate choice of the numbers δ and

ε, the geodesic segments connecting the points (see Fig. 17) do not intersect each other

(except for the marked points). The complex C together with the fan obtained ΣN gives

a hyperbolic polytope KN .

After a series of H-operations, we obtain a hyperbolic virtual polytope K ′
N with N

horns (namely, the points Pi), which differs combinatorially from that constructed in [8].

(Although it contains the same number of vertices and edges). An advantage of such a

polytope is that it admits addition of extra horns.

Step 3. Adding an extra horn. A hyperbolic polytope of type (+ + − +

−... + −) with odd number of horns.

The fan of the above constructed hyperbolic polytope KN allows a S-operation (see

Fig. 18). Thus we obtain a desired hyperbolic polytope.

This time the necessary conditions for further smoothing H-operations are a bit more

complicated than those on the previous steps. Nevertheless, they lead to a smoothable

hyperbolic polytope with N + 1 horns.

Step 4. Arbitrary necklace N = (±± ...±).

First construct a hyperbolic polytope of type (+,−, ..., +,−) with N horns, where N

equals the number of color changes in the necklace N . Applying necessary S-operations,

we insert additional horns. After a series of H-operations (as on Step 3), we obtain the
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required. �
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S-operation H-operations

upper part

lower part

Fig. 18

Using the polytopes KN as a base for applying S- and C-operations, one has even

more freedom. This technique leads to advanced (in comparison with constructed above)

combinatorial types of hyperbolic polytopes. However, we leave them for a later paper.

7 Smoothing techniques

Recall that whenever we have a smooth hyperbolic approximation of a hyperbolic virtual

polytope, we obtain a counterexample to A.D. Alexandrov’s hypothesis.

Theorem 7.1. Each polytope constructed in Section 6 admits a hyperbolic C∞-smoothing.

In particular, there exist C∞-smooth hyperbolic hérissons with odd number of horns.

Proof. We follow the pattern of [9]: to obtain the desired approximation, we find mutu-

ally consistent smooth saddle surfaces which approximate the surfaces FK(ξ) for different

ξ. The approximating smooth surface F ′
K(ξ) coincides with FK(ξ) at the points lying far

from the edges. Along the edges, the surface FK(ξ) is replaced by cylinders and cones.

By a cylinder (respectively, by a cone with a vertex A) we mean a set of points that is

invariant under all translations parallel to a line l (respectively, under homotheties with

center in A).

Note that as passing to another vector ξ, cones and cylinders may turn to each other.

That is why we need different types of local saddle approximations as given in Lemma

7.2.

Lemma 7.2. Let F be a piecewise linear surface given in the coordinate system (u, v, w)
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by the formula

w(u, v) =

{
0 if v < |u|,
|u| − v otherwise.

Let L1, L2, and L3 be its edges (see Fig. 19); let Ai be a point lying on aff(Li) \ Li or

the point lying on aff(Li) ”at infinity”.

Then F admits a C∞-smooth approximation by a saddle surface F ′ such that

• The surface F ′ coincides with F far from the edges.

• Along the edges Li, (i = 1, 2, 3), but far from the vertex O, the surface F ′ is a cone

with the apex at Ai (i.e., a cylinder if Ai lies at infinity).

• The cylinders (or the cones) approximating L2 and L1 can be chosen independently.

L1

L2

L3

O

v
u

w

Fig. 19

Proof. The following two cases are already proven in [9]:

1. L1, L2, and L3 are approximated by cylinders.

2. L1 and L3 are approximated by cones with the apex at O, whereas L2 is approxi-

mated by a cylinder.

Clearly case 2 is the tightest and implies the whole lemma. �

Continue the proof of the theorem.

Step 1. Consider a narrow belt about the equator z = 0 on the sphere S2 and

construct first a local approximation in the belt.

The fan of K intersected with the belt splits into disjoint union of figures of two types

(see Fig. 20).

Owing to H-operations, we may assume that all edges of the fan ΣK are shorter

than π/2. Consider a collection of hemispheres with poles in some points {ηi} lying on

the equator such that the union of the hemispheres covers the belt. Choose mutually

consistent approximations of the surfaces F(ηi) along the belt as follows:

• Edges of type 1 coming out of of the belt, are approximated by cones with the apex

at the vertex corresponding to A (i.e., at the vertex lying on the equator z = 0.

• Edges of type 2 coming out of the belt, are approximated by cylinders.

Step 2. Put ξ = (0, 0,±1) and consider the surface FK(ξ). The surface has already

some approximations (arising from Step1) along the edges coming from infinity. Namely,
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A

type 1 type 2

Z=0

Fig. 20

if an edge arises from type 1, it is approximated by a cylinder. If an edge comes from

type 2, it is approximated by a cone with an apex lying beyond the edge. The only

(mild) condition on the approximations we choose is that the cones and cylinders must

be narrow (i.e., F ′ differs from FK(ξ) in a narrow domain along the edges).

Step 3. Using the freedom of choice (Lemma 7.2), one can expand these approxima-

tions to a global saddle surface F ′, approximating FK(ξ). �
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