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Abstract. Four mutually dependent facts are proven.

• A smooth saddle sphere in S3 has at least four inflection arches.

• Each hyperbolic hérisson H generates an arrangement of disjoint ori-

ented great semicircles on the unit sphere S
2. On the one hand, the

semicircles correspond to the horns of the hérisson. On the other hand,

they correspond to the inflection arches of the graph of the support

function hH .

The arrangement contains at least one of two basic 4-arrangements.

• A new type of a hyperbolic polytope with 4 horns is constructed.

• There exist two non-isotopic smooth hérissons with 4 horns.

This is important because of the obvious relationship with extrinsic ge-

ometry problems of saddle surfaces, and because of the non-obvious rela-

tionship with A.D. Alexandrov’s uniqueness conjecture.

1. Introduction

The paper proceeds the study of hyperbolic virtual polytopes, hyperbolic
hérissons, and associated saddle surfaces. These notions arose originally as a
tool for constructing counterexamples to the following uniqueness conjecture,
proven by A.D. Alexandrov (see [1]) for analytic surfaces.

Uniqueness conjecture for smooth convex surfaces.
Let K ⊂ R

3 be a smooth convex body. If for a constant C, at every point
of ∂K, we have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the
principal curvature radii of ∂K).

Given a counterexample K to the conjecture, the Minkowski difference of K

and the ball of radius C is a hyperbolic hérisson. Conversely, the Minkowski
sum of a hyperbolic hérisson and a sufficiently large ball is a counterexample
to the conjecture (see [6]).

With a hyperbolic hérisson we associate the dual object, namely, the spher-
ical graph of its support function (Section 2). It is a sphere-homeomorphic
closed (spherically) saddle surface embedded in the sphere S3.

Theorem 1.1. (see Theorem 3.2.) Let Γ be a two-dimensional closed smooth
saddle surface lying in S3 and admitting the bijective orthogonal projection on
some great sphere S2 ⊂ S3. Assume that Γ is non-degenerate, i.e., it does
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not coincide with a great sphere. Then Γ has at least 4 inflection arches (see
Definition 3.1). �

To prove the theorem, we use the technique developed by A.V. Pogorelov
in [11]. In the paper, he erroneously asserts that the above A.D. Alexanrov’s
conjecture is true. We indicate his gap and demonstrate that his method leads
directly to the Theorem 3.2.

Corollary 3.4. Each hyperbolic herisson H generates an arrangement of
at least four disjoint oriented great semicircles on the unite sphere S2. There
is a natural one-to-one correspondence

”semicircles of the arrangement ↔ horns of the herisson ↔ inflection arches
of the graph of the support function hH”. �

The following theorem is a discrete version of the Theorem 3.2.

Theorem 3.5. Let Γ be a non-degenerate two-dimensional closed polytopal
saddle surface lying in S3 (i.e., all the facets of Γ are some spherical polygons).
Suppose that Γ admits the bijective orthogonal projection on some great sphere
S2 ⊂ S3. Then Γ contains at least 4 disjoint facets s1, s2, ..., sk such that

(1) each of si is bounded by two convex broken lines (say, by L1 and L2,
see Fig.7);

(2) each si contains a great semicircle;
(3) the surface Γ is concave up along one of the broken lines L1 and L2. It

is concave down along the other broken line. �

Definition 1.2. Two smooth hérissons H0 and H1, both with 4 horns, are
called isotopic if there exists a continuous family of hérissons Ht which starts
at H0 and ends at H1 such that for any t ∈ [0, 1], the hérisson Ht has exactly
four horns.

Example 4.2. We show that there exist two non-isotopic arrangements A1

and A2 of four great semicircles (see Fig. 8). After that, we construct a hyper-
bolic hérisson with 4 horns which generates the arrangement A2. The already
known example by Martinez-Maure (see Fig. 1) generates the arrangement
A1. Since the arrangements are non-isotopic, the hérissons are non-isotopic
as well. �

To construct the new hyperbolic hérisson, we first construct a polytopal
saddle surface spanned by some special linkage on the 3-dimensional sphere.
This yields a new hyperbolic virtual polytope with 4 horns. Then we apply
the smoothing technique and get the required hérissons.
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Figure 1

2. Preliminaries

The theory of virtual polytopes ([4], [8], [10]) and the theory of hérissons
([6], [7], [12]) gives a geometric interpretation of the Minkowski difference of
convex polytopes and smooth convex bodies.

Here we sketch briefly the part of this theory to be used in the paper,
referring the reader to [8], [9], and [10] for details.

Let h : R
3 → R be a continuous positively homogeneous function which is

either piecewise linear or C2-smooth.
If h is a convex function, then it is the support function of a convex polytope

or of a smooth convex body.
Two cases are of particular interest: when h is (at least C2) smooth and

when h is piecewise linear. In both cases, h is the difference of two convex
functions, either piecewise linear or smooth, so it makes sense to interpret h as
the support function of the Minkowski difference of the corresponding objects
(either smooth bodies or polytopes).

We associate below with such a function h two mutually dual objects: a sur-
face in R

3, which generalizes the correspondence ”support function ↔ convex
body”, and the spherical graph of h.

Hérissons as surfaces in R
3. Let h : R

3 → R be a continuous positively
homogeneous C2-smooth function. By the hérisson H with the support func-
tion h we mean the envelope of the family of planes {eh(ξ)}ξ∈S2, where eh(ξ)
is given by the equation (ξ, x) = h(ξ). It is a sphere homeomorphic surface
with possible self-intersections and self-overlappings.



4 G. PANINA

As a set of points, a hérisson H coincides with the image of the mapping

ϕ : S2 −→ R
3,

(x, y, z) −→ (h′

x(x, y, z), h′

y(x, y, z), h′

z(x, y, z)).

If we start with a convex function h, then H is known to be the boundary
of the convex body with the support function h.

Virtual polytopes as surfaces in R
3. Let h : R

3 → R be a continuous
positively homogeneous piecewise linear function.

The fan Σh of the function h is defined as the minimal tiling of R
3 such

that h is linear on each tile. It consists of some cones with a common apex at
O. We shall depict the spherical fan, i.e., the intersection of Σh with the unit
sphere centered at O.

It is possible to associate with h some polytopal surface H (see [7-10]) which
is called the virtual polytope with the support function h. The surface H is
combinatorially dual to the fan Σh, and the coordinates of the vertices can be
easily read off from the function h.

Namely, each 3-dimensional tile σ of Σh corresponds to the vertex of H with
coordinates

((h |σ)′x(·), (h |σ)′y(·), (h |σ)′z(·)).

Here h |σ stands for the restriction of h on the tile σ. Since it is a linear
function, the expression does not depend on the point of the tile.

This repeats literally the way of reconstruction of a convex polytope by its
support function.

Spherical graph. Let h : R
3 → R be a positively homogeneous continuous

function. It makes sense to draw its graph on the 3-dimensional sphere. Fix an
embedding of the 3-dimensional real space R

3 in R
4. The unit sphere centered

at O in R
3 (respectively, in R

4) is denoted by S2 (respectively, by S3). Denote
by Γ its graph. The intersection of Γ with the sphere S3

Γsph(h) = Γ(h) ∩ S3

is called the spherical graph of the function h.
It is a closed 2-dimensional surface. The spherical central projection

π : S3 \ {(0, 0, 0, 1), (0, 0, 0,−1)} → S2

maps Γsph(h) one-to-one to S2 (see Fig. 2).

Definition 2.1. A surface F ⊂ R
3 is called a saddle surface if there is no

plane cutting a bounded connected component off F .
Equivalently, a surface F is saddle if no plane intersects F locally at just

one point.
Analogously, a surface F ⊂ S3 is called a spherically saddle surface if no

great 2-dimensional sphere intersects F locally at just one point.
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Figure 2

Collection of affine graphs of h. For each ξ ∈ S2, denote by e(ξ) the plane
in R

3 tangent to S2 at the point ξ. Denote by h|e the restriction of h on the
plane e = e(ξ).

Consider the affine graph of the restriction h|e, namely,

Γaff (h, e) := {(v, u, t) ∈ R
3 | (v, u) ∈ e; t = h(v, u)}.

The union of all images of affine graphs Γaff (h, e) on S3 under the central
projection φ with the center O equals the spherical graph of h (see Fig. 2).

Definition 2.2. A function h is called hyperbolic if Γaff (h, e(ξ)) is a saddle
surface for every ξ ∈ S2. A hérisson (or a virtual polytope) is called hyperbolic
if its support function is hyperbolic.

The spherical graph of h and the collection of affine graphs of h have the
same convexity properties. More precisely,

(1) all affine graphs of h are saddle surface if and only if the spherical graph
of h is a spherically saddle surface;

(2) inflection arches (see Definition 3.1) of the spherical graph correspond
to inflection rays of affine graphs.
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Horns of hyperbolic objects.

Definition 2.3. Let H be a hyperbolic virtual polytope or a hyperbolic
hérisson. A point P ∈ H is called a horn if there exists a plane e passing
through P and intersecting the surface H locally just at one point P .

Let e+ be the half-space bounded by e and containing a neighborhood of
P on the surface H . The outward normal vector n of e+ is called an outward
vector of the horn P .

Definition 2.4. Denote by N(P ) the set of all outward vectors of P . A vector
d is called a direction vector of the horn P if (d, n) > 0 for each n ∈ N(P )
(here and in the sequel (·, ·) stands for the scalar product).

The set of direction vectors of a horn is always non-empty.

Lemma 2.5. Let H be a hyperbolic herisson or a hyperbolic polytope. Let {di}
be a collection of direction vectors of its horns (we take one direction vector
for each horn). Then ⋃

i

S+(di) = S2,

where S+(d) = {x ∈ S2 : (x, d) > 0}. �

3. Inflection arches. Möbius-type theorems for

two-dimensional saddle spheres in S3

Definition 3.1. Let Γ be a smooth saddle surface in S3.
An inflection arch of the surface Γ is a great semicircle S ⊂ S3 such that

• S ⊂ Γ;
• for each great 2-dimensional sphere e ⊂ S3 which intersects S trans-

versely, the point e
⋂

S is an inflection point of the curve e
⋂

Γ.

An inflection arch carries a natural orientation (see Fig. 3).

Theorem 3.2. Let Γ be a two-dimensional closed smooth saddle surface lying
in S3 and admitting the bijective orthogonal projection onto some great sphere
S2 ⊂ S3. Assume that Γ is non-degenerate, i.e., it does not coincide with a
great sphere. Then

(1) Γ contains at least 4 disjoint inflection arches.
(2) The projections of all inflection arches onto S2 form an arrangement

of disjoint oriented great semicircles {Ai} such that
⋃

i

S+(Ai) = S2,

where S+(Ai) is the hemisphere bounded by the extension of Ai consis-
tent with the orientation of Ai.

(3) The arrangement {Ai} contains at least one subarrangement which
equals (up to an isotopy and a symmetry) one of the arrangements
A1, A2 presented in Fig. 8. By this reason, the arrangements A1 and
A2 are called the basic arrangements.
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Figure 3

Proof. (1) By the assumption, Γ is the spherical graph of the support
function h of some hyperbolic hérisson H . The map ϕ : R

3 \ O → R
3, given

by the formula

ϕ(·) = (h′

x(·), h
′

y(·), h
′

z(·))

maps R
3 \ O to the surface H . The surface H spans affinely the space R

3

(see [11]). Therefore it has at least 4 horns, say, P1, ..., and P4. Treat them
separately.

For the horn P1, fix a Cartesian coordinate system (x, y, z) in R
3 such that

O = P1, and such that the x-coordinate of each point lying on H is positive.
Therefore, h′

x > 0 everywhere except for the preimage of the horn P1.
Let ξ ∈ ϕ−1(P1). Choose the plane E = Eξ such that ξ ∈ E and E contains

a line parallel to the axes (x).
Denote by f the restriction of the function h to the plane E and denote by

F = F (ξ) the graph of the restriction. Let the Cartesian coordinate system
(u, v, w) be such that E = (u, v), ξ = (0, 0) and the axes u is parallel to the
axes x.

By construction, the following statements are valid:

(1) f ′
u(u, v) ≥ 0.

(2) f ′
u(u, v) = 0 ⇔ (u, v) ∈ ϕ−1(P1).

(3) f ′
u(0, 0) = 0.

(4) f(ξ) = f(0, 0) = 0.
(5) The surface F is saddle.
(6) The surface F tangents E at the point ξ.

Denote by T ⊂ E the set of points at which the surface F tangents the plane
E. Obviously, T = ϕ−1(P1) ∩ E.
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Figure 4

We show below that the above properties (1) and (5) of F imply that the
set T is bigger than just one point ξ and contains some ray.

For a plane E(α) passing through the points (0, 0, 0) and (0, ε, f(ε)), take
the connected component C(α) of the set F \E(α) which lies next to the point
(0, 0) in the positive u-direction (i.e., the component which contains points
with zero v-coordinate and small positive u-coordinates.)

For an appropriate choice of E(α), the component C = C(α) is infinite in
both directions along the v-axes.

Indeed, since F is saddle, C can not bounded. For some choice of the plane
E(α), the component C is infinite to the left along the axes v. Similarly,
for some other choice, C is infinite to the right along the axes v. Therefore,
for some intermediate choice of E(α), the component C(α) is infinite in both
directions.

Denote by (α) the orthogonal projection of C(α) onto the plane E. Following
A.V. Pogorelov, study its behaviour, as α → 0.

A point (v0, u0) ∈ E belongs to T if and only if (v0, u0) ∈ Γ ∩ E and for all
small α ≥ 0, the line in the plane E given by v = v0 intersects the boundary
of α at least twice.

At this point, A.V. Pogorelov erroneously concluded that the set (α) looks
like in Case 1 (see Fig. 5). He deduced then that the tangent set T contains
a line. Similar treatment of the other horns implied then that the surface Γ is
a great sphere.

Pogorelov missed the Case 2 (see Fig. 5).

Lemma 3.3. If the set T does not contain a line, then it is restricted by graphs
of two functions, say, p1 and p2. These functions are defined on a ray, say on
the ray [a,∞). Besides, p1(a) = p2(a), and the function p1 (respectively, p2)
is concave down (respectively, concave up).
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Figure 5

Proof. Suppose the contrary. Then there exists a line l in the plane E which
cuts a bounded connected component off the set T which does not contain the
endpoint of T . Rotate the plane E around l on an angle δ such that the upper
half-plane raises. For a small δ, the plane obtained cuts a bounded connected
component off the surface Γ, which is impossible for a saddle surface. The
lemma is proven.

Lemma 3.3 implies that the intersection of ϕ−1(P ) with the plane E(ξ) con-
tains a ray. Treating similarly other points ξ (and therefore, other planes E(ξ)),
we conclude that the surface Γ contains a great semicircle which corresponds
to the horn P1.

The other horns give at least three more semicircles lying on Γ. They are
disjoint because they are contained in preimages of different points.

(2) This statement follows directly from Lemma 2.5.
(3) Put S−

i = S2 \ S+

i . The statement (2) is equivalent to the identity⋂
i S

−

i = ∅. Show that the same identity is valid for some 4 hemispheres from
the arrangement. Assume the contrary, i.e., that each 4 hemispheres have a
common point. Then by Helly’s Theorem, all hemispheres have a non-empty
intersection. A contradiction.
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Figure 6

It remains to observe that there exist just two types (up to an isotopy
and a symmetry) of arrangements of four oriented great semicircles satisfying⋃

4

i=1
S+(di) = S2. �

Corollary 3.4. Each hyperbolic hérisson H generates an arrangement of dis-
joint oriented great semicircles on the unite sphere S2. There is a natural
one-to-one correspondence

”semicircles of the arrangement ↔ horns of the herisson ↔ inflection arches
of the graph of the support function hH”. �

A spherical polygon in S3 is a subset of some great sphere S2 ⊂ S3 bounded
by a closed simple piecewise geodesic line.

Theorem 3.5. Let Γ be a non-degenerate two-dimensional closed polytopal
saddle surface lying in S3 (i.e., all the facets of Γ are some spherical poly-
gons). Suppose that Γ admits the bijective orthogonal projection onto some
great sphere S2 ⊂ S3. Then Γ contains at least 4 disjoint facets s1, s2, ..., sk

such that

(1) each of si is bounded by two convex broken lines (say, by L1 and L2)
such that the convexity directions look like in Fig.7;

(2) each si contains a great semicircle;
(3) the surface Γ is concave up along one of the broken lines L1 and L2. It

is concave down along the other broken line. �

Proof. By the assumption, Γ is the spherical graph of the support function
h of some virtual polytope H .

The surface H has at least 4 horns, say, P1, ..., and P4. Show that the tiles
of the fan Σh dual to the horns give the required collection of facets.

For the horn P1, fix a Cartesian coordinate system (x, y, z) in R
3 such that

O = P1, and such that the x-coordinate of each point lying on H is positive.
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Figure 7

Figure 8

Therefore, h′
x = 0 on the tile of Σh which corresponds to the horn P1, and

h′
x > 0 elsewhere.
Let ξ ∈ ϕ−1(P1). Choose the plane E = Eξ such that ξ ∈ E and E contains

a line parallel to the x-axes .
By construction, the graph F of the restriction h |E is horizontal above the

tile which is dual to the horn P and has a positive slope in the direction of
the x-axes. Besides, the surface F is saddle. These two properties imply the
statement of the theorem. �

4. Two non-isotopic hyperbolic polytopes with 4 horns

Lemma 4.1. The arrangements A1 and A2 of oriented great semicircles pre-
sented in Fig. 8 are non-isotopic.

Proof. Given an arrangement of great semicircles, construct a graph which is
invariant under isotopies and symmetries. The vertices of the graph correspond
to the great semicircles. Two vertices i and j are connected by an edge if
either the extension of the great semicircle i in some direction first meets the
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Figure 9

semicircle j, or the extension of the great semicircle j first meets the semicircle
i. It remains to observe that the graphs for the arrangements in question are
different. Namely, for the second arrangement we get a complete graph with
four vertices, whereas for the first arrangement the graph is not complete. �

Example 4.2. (1) There exist two hyperbolic polytopes, each with 4 horns,
such that the generated arrangements are isotopic to A1 and A2.

(2) There exist two non-isotopic hyperbolic hérissons, which are smooth
saddle (except for the four horns) saddle surfaces .

Proof. The first hyperbolic polytope and the first smooth hyperbolic hérisson
(see Fig. 1) are alreday presented by Martinez-Maure (see [7] and [6]).

It remains to construct the second hyperbolic polytope (steps 1-3) and then
smoothen it (step 4) to obtain the second hyperbolic hérisson.

Step 1. Fix the positive and negative hemispheres S2
± with the poles P =

(0, 0, 1) and −P = (0, 0,−1). Consider eight geodesic lines (i.e., great circles)
in S3 forming a linkage as is shown in Fig. 9.

This means that each pair of lines li, mi has two common points Pi and −Pi.
No other pairs of lines has intersections. Fig. 9 depicts the planar diagram of
the linkage (i.e., its images under the projection π on the positive and negative
hemispheres with indicated ”passes”). In particular, the line l1 passes over l2
above S2

+, the line l1 passes under m2 above S2
+ (”under” and ”over” refer to

the direction of the t-axes). Denote by χi the spherical 2-gon with edges lying
on li and mi, assuming that its image is marked grey in Fig. 9. Each of these
2-gons has two vertices, namely, Pi and −Pi. The 2-gons Λi = π(χi) form a
disconnected polytopal complex Λ embedded in S2.
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Figure 10

Figure 11

Fix a tiling Θ of S2 as is shown in Fig. 10. It has four 2-gons (marked grey),
whereas all other polygons are spherical triangles.

Step 2. Next, move somewhat the vertices of the tiling Θ (and denote the
new points by the same letters with primes) in such a way that each of Λi is
replaced by a spherical polytope Λ′ bounded by two convex broken lines (see
Fig. 11). The lines should be broken at each vertex of the tiling.

Apply the synchronized changes to χi. Namely, let χ′
i be the 2-dimensional

spherical polygons lying close to χi such that π(χ′
i) = Λ′

i. In addition, we claim
that the prolongations of the edges of χ′

i adjacent to P ′
i (and (−Pi)

′) and the
boundary (broken) lines of χ′

i form the same linkage type as the original lines
li, mi.

The spherical polygons χ′
i play the role of inflection arches.
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Step 3. There exists a unique piecewise linear function h such that
1. The function h is linear on each triangle of Θ′ and on each Λ′

i (more
precisely, h is linear on each cone in R

3 based on these spherical polygons).
2. The polytopes χ′

i lie on its spherical graph Γsph(h).
Show that the surface Γsph(h) is saddle at each of its vertices A. If A does

not equal any of the points P ′
i or (−Pi)

′, then A is a vertex of χ′
i for some i,

and the angle of χ′
i at the vertex A is greater than π. This means that A is a

saddle point.
Assume that A = P ′

1 can be cut off. By construction, the surface in question
contains four segments with an endpoint at P ′

1: the two adjacent edges of λ′
1

and the segments corresponding to their extensions. Due to the linking type,
each hemisphere, whose boundary passes through P ′

1, contains at least one of
the segments. Therefore, P ′

1 is a saddle vertex as well. The other vertices
(−Pi)

′ are treated similarly. The statement (1) is proven.

Step 4. The previous steps yield a saddle surface which can be interpreted
as the graph of the support function of some virtual polytope χ′

i. It is a closed
polytopal surface in R

3 which is saddle at each of its vertices except for 4
horns.

All the vertices of K, except for the horns, have the valence 3. The smooth-
ing technique developed in [8] and [10] allows to construct a smooth saddle
surface with 4 horns approximating the surface K. �
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[7] Y. Martinez-Maure, Théorie des hérissons et polytopes, C.R. Acad. Sci.

Paris, Ser.1, 336, No. 3 (2003), pp. 241-244.
[8] G. Panina, New counterexamples to A.D. Alexandrov’s uniqueness hy-

pothesis. Advances in Geometry, 5, No. 2 (2005), pp. 301-317.
[9] G. Panina, A.D. Alexandrov’s uniqueness theorem for convex polytopes

and its refinements. to appear in Beiträge zur Algebra und Geometrie.
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