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Abstract. The paper gives an illustrated introduction to the theory of

hyperbolic virtual polytopes and related counterexamples to A.D. Alexan-

drov’s conjecture.

1. Introduction

Sometimes it is reasonable to treat mostly non-convex objects instead of
convex ones. For instance, to consider hyperbolic (i. e., saddle) virtual poly-
topes in contrast to convex ones, or to embed graphs such that the embedding
looks as non-convex as possible. Probably it is better to start with the figures
rather than with definitions: just have a look at the hyperbolic polytope
with 8 horns (Fig. 13) and its fan (Fig. 14).

This motto appeared independently in a natural way in different fields
(chronologically, in computer science, graph embedding problems, and clas-
sical convex geometry) and for quite different reasons.

The paper is focused on the latter subject, namely, on A.D. Alexandrov’s
conjecture and hyperbolic virtual polytopes.

We aim at a most elementary introductive description, trying nevertheless
to keep complete proofs and constructions. By this reason, we organize the
paper as follows.

We give first necessary remindments on Minkowski addition and support
functions of convex polytopes (Section 2). Instead of giving the complete
theory of virtual polytopes (for which the reader should be referred to [3] and
[6]), we give a shortcut to the notion of virtual polytopes (Section 3).

Hyperbolic virtual polytopes are discussed in Section 4. Dislike the ear-
lier papers [6] and [8], we give two explicit examples of hyperbolic virtual
polytopes (Section 5) rather than existence-type theorems. Namely, we de-
scribe the construction of hyperbolic polytopes with 8 and 6 horns. The latter
arose originally as an auxiliary tool for constructing counterexamples to A.D.
Alexandrov’s conjecture (discussed in Section 6). The exact coordinates are
given in section 7.
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2. Minkowski addition, support function

Minkowski addition
Let R

3 be the real space with the origin O. We identify points in R
3 with

their radius-vectors.
Denote by P the set of all compact convex polytopes in R

3. Degenerate
polytopes are also included, so a closed segment and a point are polytopes.

Definition 2.1. Given polytopes K, L, their Minkowski sum is defined by
K ⊗ L = {x + y : x ∈ K,y ∈ L}.

The set P endowed with Minkowski addition forms a semigroup with the
unit element E = {O}.

Support function

Definition 2.2. The support function of a polytope K is the function
hK : R

3 → R defined by

hK(x) = maxy∈K(x,y),

where (x,y) stands for the scalar product.

Example 2.3. Let a be a point. Then its support function is linear:

h{a}(x) = (a, x).

Propositon 2.4. The support function hK of a convex polytope K possesses
the following properties.

(1) hK is continuous;
(2) hK is positively homogeneous, namely,

hK(λx) = λhK(x)

for λ ≥ 0 (in particular, this implies that hK(O) = 0);
(3) hK isconvex;
(4) hK is piecewise linear. The domains of linearity correspond to the

vertices of the polytope K (for the maximum of the above scalar product
is achieved at one of the vertices). These domains tile R

3 into a union
of polytopal cones with the apex at O. This tiling is called the outer
normal fan of the polytope K. �

In the sequel, we sometimes speak of (and draw) the intersection of the fan
with the unit sphere S2 centered at O. This yields the spherical fan. The cones
of the fan correspond to spherical polytopes of the spherical fan. The latter
are called the cells of the fan. The 0-dimensional cells are called the vertices
of the spherical fan.

A polytope and its fan are combinatorially dual. In particular, vertices of
K correspond to cones of the fan (consequently, to the 2-dimensional cells of
the spherical fan).
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Denote by G the set of functions that are:

• defined on R
3;

• convex;
• continuous;
• piecewise linear with respect to some fan;
• equal 0 at the origin O.

This set (together with the pointwise addition) forms a semigroup which
is known to be isomorphic to the semigroup P. The canonical isomorphism
s : P → G maps each polytope K to its support function hK .

3. Virtual polytopes

Virtual polytopes
Virtual polytopes were defined by A. Pukhlikov and A. Khovanskii [3].
The Grothendieck group P∗ of the semigroup P is called the group of virtual

polytopes. Remind that P∗ is defined to be the group of all formal expressions
of type K⊕L−1 subject to the usual cancelation law: (K⊕M)⊕ (L⊕M)−1 =
K ⊕ L−1.

The semigroup isomorphism s induces a group isomorphism s∗:

s∗ : P∗ → G∗.

Here G∗ is the group of functions that are:

• defined on R
3;

• continuous;
• piecewise linear with respect to some fan;
• equal 0 at the origin O.

(In comparison with G, the convexity property disappears.)

Definition 3.1. Let K be a virtual polytope. By the support function hK

of K we mean the function s∗(K). In other words, if K = L ⊕ M−1, then
hK = hL − hM .

Similarly to the convex case, the support function of a virtual polytope K

is piecewise linear with respect to some conical tiling of R
3, which is called the

fan of K. Dislike the convex case, the tiles of such a fan can be non-convex.

Virtual polytopes related to a polytopal surface

Theorem 3.2. Let C be a closed polytopal surface in R
3 (possibly non-convex,

with self-intersections).
Suppose there exists a collection of normal vectors ξi of its facets Ti and a

spherical fan Σ, such that:

• the set of vertices of the fan Σ equals the set of endpoints of {ξi};
• the fan Σ is combinatorially dual to the surface C. (In particular, this

means that the points ξi and ξj are connected by an edge of Σ if and
only if Ti and Tj share an edge in C.)
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Figure 1. Three examples of virtual tetrahedra

Then the pair (C, Σ) canonically defines some virtual polytope K whose fan
equals Σ. �

Given a surface C, sometimes there exist several fans, satisfying the above
conditions. This means, that for each fan we have a virtual polytope, related
to C. Different fans give different virtual polytopes.

Example 3.3. Figure 1 depicts the surface of a tetrahedron with three associ-
ated fans. This yields three different virtual tetrahedra.

The surface of a tetrahedron can be associated with 52 (!) different fans
(and therefore, with 52 virtual polytopes). The complete list is depicted in
Figure 2 (by Vlad Scherbina).

However, this example is misleading: for most of polytopal surfaces, there
are no associated virtual polytopes.
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Figure 2. The complete list of virtual tetrahedra

4. Hyperbolic virtual polytopes

Let K be a virtual polytope in R
3, and let h = hK be its support function.

For ξ ∈ S2, let e(ξ) be the plane defined by the equation (x, ξ) = 1. Consider
the restriction of h to the plane e(ξ) and denote by F = FK(ξ) the graph
of the restriction. The surface F is piecewise linear. Its vertices and edges
correspond to those of the fan ΣK intersected with the open hemisphere with
the pole at ξ.

The virtual polytope K is convex (i.e. K ∈ P) if and only if the surface
FK(ξ) is concave down for any ξ.

Definition 4.1. Let F be a surface in R
3, x ∈ F . The point x is called saddle,

if any plane passing through x locally intersects F in more than one point.
The surface is saddle if all its points are saddle.
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Figure 3. A pointed vertex and a pointed fan

Figure 4. The part of the surface FK(ξ) and the plane e

Definition 4.2. A virtual polytope K is called hyperbolic if FK(ξ) is a saddle
surface for any ξ ∈ S2. In the sequel, we call such virtual polytopes, for short
hyperbolic polytopes.

Definition 4.3. A vertex ξ of a spherical fan Σ is pointed, if there exists an
incident to ξ angle larger than π. A fan is pointed, if each its vertex is pointed
(Fig. 3).

All below examples of hyperbolic polytopes are constructed in the framework
of Theorem 3.2. This means that each time we construct a polytopal surface
and an associated fan. These polytopal surfaces have non-saddle vertices. Such
vertices are called horns.

Lemma 4.4. Let K be a virtual polytope with a pointed spherical fan ΣK.
Then the polytope K is hyperbolic.

Proof. The vertices of FK(ξ) correspond to those of ΣK . At each of its
vertices, the surface FK(ξ) has an incident face with an angle larger than π

(Fig. 4). Thus it is pointed at each of its vertices. �

Corollary 4.5. The second virtual tetrahedron from Example 3.3 is hyperbolic.
�

A much more interesting and complicated example of a hyperbolic virtual
polytope appeared in [5]. It is a discretization of the hyperbolic hérisson
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Figure 5. Planar star with 8 vertices

constructed in [4] (see Section 6 for some details). The author calls it ”a
polytopal hérisson”.

5. Non-trivial examples of hyperbolic polytopes with 6 and 8

horns

The existence of hyperbolic polytopes with any number of horns greater than
3 was proved in [6] and [8]. Here we present two explicit examples according
to the following scheme.

(1) First we construct a polytopal surface with a boundary (the double
star).

(2) Then we patch up some cross-caps along its boundary and obtain a
closed polytopal surface with oriented facets. Each cross-cap gives a
horn.

(3) We depict an associated spherical fan. Due to Theorem 3.2, this yields
a virtual polytope.

(4) By construction, the fan is pointed. By Lemma 4.4 this means that
the polytope is hyperbolic.

A hyperbolic polytope with 8 horns
(1) Start with the planar star with 8 vertices in the plane (x, y) ⊂ R

3 (Fig.
5).



8 MARINA KNYAZEVA, GAIANE PANINA

Figure 6. 3D star with 8 vertices

Figure 7. Stars S1 and S2

Make the star 3-dimensional by shifting up its even vertices and shifting
down the odd ones. This gives a polytopal surface S1 ∈ R

3 (Fig. 6), consisting
of all triangles of type (OAiAi+1), i = 1, ..., 8. (We assume that A9 = A1.)

Take the star S1 and its mirror image S2 with respect to the plane (x, y).
Figure 7 depicts them separately. Together they form the double star (Fig. 8).

Choose normal vectors of the facets of S1 (respectively, S2) that look upwards
(respectively, downwards).
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Figure 8. The double star

Figure 9. A cross-cap and the cell of the fan, corresponding to
the vertex H

(2) Patch eight cross-caps to the double star (each of them gives a horn).
A cross-cap is a collection of 4 oriented triangles (Fig. 9).

Keeping in mind Theorem 3.2, we depict a cross-cap with orientation of its
faces together with the cell of the fan (to be constructed below) corresponding
to the vertex H . The cell is a spherical 4-gon with just two convex angles.

The boundary of the double star splits into a union of ”crosses”. A ”cross”
consists of two symmetric segments: an edge of the star S1 (marked blue) and
an edge of the star S2 (marked red). The cross-cap has also a cross (blue +
red), which indicates the patching rule (Fig. 10)

An orange edge of the cross-cap is patched up to the orange edge of the
neighbor cross-caps (Fig. 11, Fig. 12).

Finally, we get a closed polytopal surface, which is saddle at each of its
vertices except for the 8 horns (Fig. 13)

(3) Figure 14 depicts the associated fan.
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Figure 10. Patching rule

Figure 11. Two adjacent cross-caps

(4) This fan is pointed. Therefore we have a hyperbolic virtual polytope
with 8 horns.
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Figure 12. The patching process

Figure 13. Hyperbolic polytope with 8 horns



12 MARINA KNYAZEVA, GAIANE PANINA

Figure 14. The fan of the hyperbolic polytope with 8 horns

Figure 15. Planar star with 6 vertices

A hyperbolic polytope with 6 horns
The construction is similar to the previous example, but still there is some

difference.
(1) Start with the planar star with 6 vertices in the plane (x, y). It is a

doubly covered triangle (Fig. 15).

Similarly to the previous example, we make the star 3-dimensional by shift-
ing up its even vertices and shifting down the odd ones. This gives a polytopal
surface S3 (Fig. 16).

Take the surface S3 and its copy S4 (this time the surface constructed is
symmetric with respect to the plane (x, y)). We choose different orientation
for the two surfaces: the normal vectors of S3 look upwards, whereas the
normal vectors of S4 look downwards. Taken together, these stars form a
double star. This time the double star has not only self-intersections but also
self-overlappings.

(2) The boundary of the double star again splits into a union of crosses.
Note that some of the crosses coincide. Patch up a cross-cap to each of these
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Figure 16. The star S3

Figure 17. Two cross-caps patched to coinciding crosses

crosses. So, dislike the example with 8 horns, the cross-caps, patched up to
two coinciding crosses, are placed one over another (Fig. 17)

Finally, we get a hyperbolic polytope 6 horns (Fig. 18).
(3) The associated fan looks analogously to the previous example, but this

time the fan has a 6-gon in the center instead of an 8-gon. Thus, we have a
virtual polytope.
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Figure 18. Hyperbolic polytope with 6 horns

6. A.D. Alexandrov’s conjecture

Non-trivial hyperbolic virtual polytopes appeared originally as an auxiliary
construction for various counterexamples to the following conjecture.

A.D. Alexandrov’s conjecture
Let K ⊂ R

3 be a smooth convex body. If for a constant C, at each point
of ∂K, we have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the
principal curvature radii of ∂K).

It was proven for analytic surfaces by A.D. Alexandrov [1].
For a long time mathematicians were certain about correctness of the con-

jecture but obtained only some partial results. The first counterexample was
given by Y. Martinez-Maure [4]. First, he demonstrated that each smooth
hyperbolic hérisson generates a counterexample. Next, he presented such an
example. It is a smooth hyperbolic surface with four horns, given by an explicit
formula.

Papers [6], [7], and [8] by G. Panina give a way of constructing (unexpect-
edly diverse) counterexamples to the conjecture, using theory of hyperbolic
polytopes.

• Construct a hyperbolic virtual polytope (this is the most difficult step).
• Smoothen its support function h (preserving saddle property).
• Add to h the support function of a ball (which is sufficiently large

to make the sum convex). The result is the support function of a
counterexample to the conjecture.
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7. Coordinates of the vertices

The hyperbolic polytope with 8 horns.

The vertices of the double star are:
O(0, 0, 0), (0, 1,−12

√
93

841
), (

√
2

2
,−

√
2

2
, 12

√
93

841
), (−1, 0,−12

√
93

841
), (

√
2

2
,
√

2

2
, 12

√
93

841
),

(0,−1,−12
√

93

841
), (−

√
2

2
,
√

2

2
, 12

√
93

841
), (1, 0,−12

√
93

841
), (−

√
2

2
,−

√
2

2
, 12

√
93

841
), (0, 1, 12

√
93

841
),

(
√

2

2
,−

√
2

2
,−12

√
93

841
), (−1, 0, 12

√
93

841
), (

√
2

2
,
√

2

2
,−12

√
93

841
), (0,−1, 12

√
93

841
), (−

√
2

2
,
√

2

2
,−12

√
93

841
),

(1, 0, 12
√

93

841
) and (−

√
2

2
,−

√
2

2
,−12

√
93

841
).

The horns are:

(10
√

2 +
√

2 +
√

2

4
, 10

√

2 −
√

2 +

√
2−

√
2

4
, 11),

(−10
√

2 −
√

2 − 2−
√

2

4
,−10

√

2 +
√

2 −
√

2

4
,−11),

(−10
√

2 −
√

2 − 2−
√

2

4
, 10

√

2 +
√

2 +
√

2

4
, 11),

(10
√

2 +
√

2 +
√

2

4
,−10

√

2 −
√

2 − 2−
√

2

4
,−11),

(−10
√

2 +
√

2 −
√

2

4
,−10

√

2 −
√

2 − 2−
√

2

4
, 11),

(10
√

2 −
√

2 + 2−
√

2

4
, 10

√

2 +
√

2 +
√

2

4
,−11),

(10
√

2 −
√

2 + 2−
√

2

4
,−10

√

2 +
√

2 −
√

2

4
, 11),

(−10
√

2 +
√

2 −
√

2

4
, 10

√

2 −
√

2 + 2−
√

2

4
,−11).

The hyperbolic polytope with 6 horns.

The vertices of the double star are:
O(0, 0, 0), (0, 1,− 4

29
), (

√
3

2
,−1

2
, 4

29
), (−

√
3

2
,−1

2
,− 4

29
), (0, 1, 4

29
), (

√
3

2
,−1

2
,− 4

29
) and

(−
√

3

2
,−1

2
, 4

29
).

The horns are:
(87+4

√
3

16
, 4+29

√
3

16
, 3),

(0,−4+29
√

3

8
,−3),

(−87+4
√

3

16
, 4+29

√
3

16
, 3),

(87+4
√

3

16
, 4+29

√
3

16
,−3),

(0,−4+29
√

3

8
, 3),

(−87+4
√

3

16
, 4+29

√
3

16
,−3).
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