
POINTED SPHERICAL TILINGS AND HYPERBOLICVIRTUAL POLYTOPESGAIANE PANINAAbstra
t. The paper presents an introdu
tion to the theory of hyperboli
virtual polytopes from the 
ombinatorial rigidity viewpoint. Namely, wegive a short
ut for a reader a
quainted with the notions of Laman graph,3D lifting, and pointed tiling.From this viewpoint, a hyperboli
 virtual polytope is a stressed pointedgraph embedded in the sphere S2.The advantage of su
h a presentation is that it gives an alternative andthe most 
onvin
ing proof of existen
e of hyperboli
 polytopes.1. Introdu
tionIn this paper, we give an alternative presentation of the theory of hyperboli
virtual polytopes.The reader should not 
onfuse them with polytopes lying in a hyperboli
spa
e. In the 
ontext of the paper, the term "hyperboli
" means "saddle". Insome sense, hyperboli
 polytopes are opposite to 
onvex polytopes by their
onvexity property.This theory arose originally as a tool for 
onstru
ting 
ounterexamples (see [4,11, 12, 20℄; see also the very �rst 
ounterexample 
onstru
ted without hyper-boli
 polytopes [9℄) to the following uniqueness 
onje
ture, proven by A.D.Alexandrov (see [1℄) for analyti
 surfa
es.Uniqueness 
onje
ture for smooth 
onvex surfa
es.Let K � R3 be a smooth 
losed 
onvex surfa
e. If for a 
onstant C, at everypoint of �K, we have R1 � C � R2, then K is a ball. (R1 and R2 stand forthe prin
ipal 
urvature radii of �K).We refer the reader to [11℄ for the relationship between the 
onje
ture andthe theory of hyperboli
 polytopes.By a 
onvex polytope we mean the 
onvex hull of some �nite set of points. De-note by P the set of all 
onvex polytopes in R3 . Equipped with the Minkowskiaddition 
, the set P is a 
ommutative semigroup with the unit element fOg.The set of all formal Minkowski di�eren
es P� = fK 
 L�1 j K;L 2 Pg is agroup whi
h is 
alled the group of virtual polytopes.Key words and phrases. Laman graph, 3D lifting, pointed pseudo-triangulation, virtualpolytope, saddle surfa
e, hyperboli
 polytope. MSC 52B10, 52B70.1



2 GAIANE PANINASimilarly to rational fra
tions, we identify K
L�1 and K 0
 (L0)�1 whereasK 
 L0 = K 0 
 L.The elements of P�, whi
h are 
alled virtual polytopes, are not mere formalexpressions. They 
an be interpreted geometri
ally, and multiple geometri
interpretations are 
ru
ial for their study.The �rst geometri
 interpretation appeared in the paper [6℄. From its view-point, a virtual polytope is a pie
ewise 
onstant fun
tion with some spe
i�
properties (a 
onvex 
hain).Alternatively, in the framework of the present paper, a virtual polytope isa stressed spheri
ally embedded graph. We turn the set of all stressed graphsinto a group (Se
tion 3), whi
h is shown (Theorem 3.7) to be 
anoni
allyisomorphi
 to the group of virtual polytopes.Further, among the virtual polytopes we single out the 
lass of hyperboli
virtual polytopes (for short, hyperboli
 polytopes).Very roughly, hyperboli
 polytopes are de�ned to be as non-
onvex as possi-ble. By de�nition, the graph of the support fun
tion of a hyperboli
 polytopeis a saddle surfa
e (in 
ontrast to 
onvex polytopes, for whi
h the graph of thesupport fun
tion is a 
onvex surfa
e).The 
ru
ial link to the pointed tilings is the following: if a spheri
ally em-bedded stressed graph is pointed, then the 
orresponding virtual polytope ishyperboli
 (Lemma 4.3).The theory of hyperboli
 polytopes has the following 
urious feature: themost non-trivial and important fa
t is the existen
e and diversity of hyperboli
polytopes (see [20℄ for some 3D images). In other words, it took a lot of e�ortsto 
onstru
t di�erent examples of hyperboli
 polytopes.The advantage of the approa
h of the paper is that it gives an alternativeand the most 
onvin
ing proof of existen
e of hyperboli
 polytopes.The paper �rst pulls the theory of planar pointed tilings to the sphere S2.Ne
essary fa
ts of graphs rigidity are transferred onto the sphere due to somesimple adjustments of Se
tion 2 and the papers [2℄ and [18℄. The only di�eren
ebetween the spheri
al and the planar 
ase (whi
h however 
hanges the situationvery mu
h) is the existen
e of pseudo-di-gons. Namely, ea
h planar polygonhas at least three 
onvex angles, whereas on the sphere there exist polygonswith just two 
onvex angles (see Fig. 4).This fa
t 
hanges Laman-type 
ounts for pointed tilings. As a 
onsequen
e,there exist pointed spheri
ally embedded Laman-plus-one (and even Laman-plus-k graphs (see Example 4.5 and Example 4.6). They possess a non-trivialsaddle 3D lifting. By de�nition, this is nothing but a hyperboli
 polytope.Thus a hard problem of 
onstru
ting hyperboli
 polytopes (whi
h originallywere 3D obje
ts) is redu
ed to 
onstru
tion of a spheri
ally embedded pointedgraph.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 3This te
hnique has already led to a new result. Namely, the author obtaineda re�nement of A.D Alexandrov theorem on 3D polytopes with mutually non-insertable fa
es (see [14℄).A
knowledgment. This resear
h was supported by NSF CCF-0430990. Theauthor is also grateful to the Bielefeld University, SFB 701, where this studywas 
ompleted.2. Graphs on the sphere. Spa
e of equilibrium stresses.A graph is a pair G = (V;E), where V = f1; 2; :::; ng is a �nite set, E is aset of unordered pairs (i; j) su
h that i; j = 1; :::; n, and i 6= j. The elementsof V and E are 
alled verti
es and edges respe
tively.A subgraph G0 of G is 
alled proper if G 6= G0.By a graph embedded in R3 we mean a triple G = (V;E; p), where V and Eare as above, and p is an inje
tive mapping p : V ! R3 .The points p(i) are denoted for short by pi and are 
alled verti
es of thegraph. The segments pipj for (i; j) 2 E are 
alled the edges of the graph andare assumed to be non-
rossing.Denote by S2 � R3 the unit sphere 
entered at O. Its points we identifywith their radius ve
tors.By a spheri
ally embedded graph we mean a quadruple G = (V;E; p; l),where V and E are as above, p is an inje
tive mapping p : V ! S2. Thepoints pi = p(i) are 
alled verti
es of the graph. A bit more 
are is neededhere to de�ne edges.The fun
tion l de�ned on the set E maps ea
h pair (i; j) 2 E to somegeodesi
 segment with endpoints at pi and pj. The segments l(i; j) are denotedfor short by lij and are 
alled edges of the graph. We don't 
laim that lij are theshortest geodesi
 segments (i.e., the minor ar
 of a great 
ir
le) 
onne
ting piand pj, so there are two possible edges with �xed endpoints (or even in�nitelymany possible edges for antipodal endpoints).We assume that the edges lij are non-
rossing.Besides, in the se
tion, we assume that all embeddings are generi
 [3℄. Inits general stating this means that the vertex 
oordinates are algebrai
allyindependent. In parti
ular, this means that for a spheri
ally embedded graph,there are no antipodal verti
es.Example 2.1. It is 
onvenient to 
onsider a great 
ir
le on S2 as an embeddedgraph (with no verti
es and a single 
losed edge) as well. We 
all it an exoti
graph EG.We will use a slightly modi�ed (in 
omparison with [3℄) de�nition of an equi-librium stress of a graph G in R3 and its natural adjustment for a spheri
allyembedded graph. However, the below de�nition is in some sense equivalent tothe 
lassi
al one.
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Figure 1De�nition 2.2. Let G = (V;E; p) be a graph embedded in R3 . A mappings : E ! R is 
alled an equilibrium stress (or shortly, a stress) of G if for ea
hi, we haveP(ij)2E s(i; j)uij = 0, where uij = ��!pipjjpipj j .A stress is 
alled non-trivial if it is not identi
ally zero.A stress is 
alled non-zero if it is non-zero on ea
h edge.The spa
e of all stresses of G we denote by S(G).De�nition 2.3. Let G = (V;E; p; l) be a spheri
ally embedded graph. Amapping s : E ! R is 
alled an equilibrium stress (or shortly, a stress) of G iffor ea
h i, we haveP(ij)2E s(i; j)uij = 0, where uij are the unit ve
tors tangent to li;j at thepoint pi. Their dire
tion are 
hosen as is depi
ted in Fig. 1.The spa
e of all stresses of G we denote by S(G).De�nition 2.4. We assume that the exoti
 graph EG possesses a stress. It
an be any real number assigned to its only edge.The following 
onstru
tion redu
es the stress of a spheri
ally embeddedgraph G to a stress of some graph embedded in R3. The ideas are borrowedfrom [2℄ and [18℄.Given a graphG embedded in S2, we add the point pn+1 = O as a new vertex.We next repla
e the edges of G by 
orresponding line segments. Finally, weadd the edges (i; n+1) for i = 1; :::; n as new edges and denote the embeddedgraph obtained by G = (V ;E; p).Proposition 2.5. The spa
es of stresses of S(G) and S(G) are 
anoni
allyisomorphi
.Proof. Let s be a stress of G. De�ne the stress s of G as follows. Fori; j < n + 1, let �i;j be the angle between ��!pipj and uij (see Fig. 1).Put s(i; j) = (s(i; j)= 
os�ij if jli;jj � �;�s(i; j)= 
os�ij otherwise.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 5Put also s(i; n + 1) = �Pnj=1 s(i; j) tan�ij. Show that his mapping is anisomorphism between S(G) and S(G). We 
he
k �rst that s is a stress ofG. The 
ondition P(ij)2E s(i; j)uij = 0 at a vertex pi for i � n is valid by
onstru
tion.Besides, the sum of all ve
tors s(i; j)uij equals zero. Therefore, the 
onditionP(ij)2E s(i; j)uij = 0 is also valid for the vertex pn+1 = O. To 
on
lude theproof, observe that the des
ribed above mapping S(G) ! S(G) is invertible.That is, given a stress s of G, the stress s 
an be restored. �De�nition 2.6. ( [3℄) A graph G = (V;E) with n verti
es and m edges is aLaman graph if� m = 2n� 3, and� ea
h subset V 0 of k verti
es spans not more than 2k�3 edges. (We saythat an edge (i; j) 2 E is spanned by V 0 if i; j 2 V 0.)De�nition 2.7. ( [7℄) A Laman graph with one extra edge is a Laman-plus-one graph. Similarly, a Laman graph with k extra edges is a Laman-plus-kgraph.De�nition 2.8. ( [7℄) A graph G is a rigidity 
ir
uit if the removal of any ofits edges yields a Laman graph. Equivalently, G is a rigidity 
ir
uit if it is aLaman-plus-one graph and has no Laman-plus-one proper subgraph.The below proposition is a spheri
al version of some 
lassi
al fa
ts.Proposition 2.9. Let G be a generi
 spheri
ally embedded graph.(1) If G is a Laman graph, then G is in�nitesimally rigid.(2) If G is a Laman-plus-one graph, then G possesses a non-trivial (i.e.,not identi
ally zero) stress.(3) If G is a rigidity 
ir
uit, then G possesses a non-zero stress.Proof. 1. The rigidity of generi
 Laman graphs is valid for graphs embeddedin the plane (see [3℄). The paper [18℄ proves that it is also valid for spheri
allyembedded graphs. More pre
isely, it is proven that in�nitesimal motions ofa spheri
ally embedded graph are in a one-to-one 
orresponden
e with thein�nitesimal motions of its proje
tion on the plane.The paper [18℄ treats only those spheri
al embeddings that �t on an openhemisphere. Still the general 
ase is easily redu
ed to a hemispheri
al one viathe following tri
k.Fix a hemisphere S+. For a spheri
ally embedded graph G = (V;E; p; l),
onstru
t the new graph G+ = (V;E; p+; l+) su
h that p+i 2 S+; and p+i = �pidepending on whi
h of the points pi and �pi belongs to S+. Finally, lij isde�ned to be the segment lying also in S+.This mapping preserves rigidity but does not maintain non-
rossing prop-erty.2. Denote by n the number of verti
es ofG and bym the number of its edges.In [18℄ it is proven that G is in�nitesimally rigid. Together with Corollary 2.3.1from [3℄ applied to the graph G, this dire
tly implies that



6 GAIANE PANINA6 = 3(n+ 1)� (m + n) + dim(S(G)).Therefore, dim(S(G)) = 1.3. Suppose the 
ontrary, i.e., that G has a non-trivial stress whi
h admitszero values on some of the edges. Removal of the zero stressed edges yields aproper subgraph of G with a non-trivial stress. It is at least a Laman-plus-onegraph. A 
ontradi
tion. �3. 3D liftings for graphs on the sphereA (spheri
al) polygon on the sphere S2 � R3 is a domain of S2 boundedby a 
losed non-
rossing polygonal line (its edges are assumed to be geodesi
ar
s).A spheri
al polygon A spans a 
one C(A) in R3 with the apex at O. Namely,we put C(A) = f�x 2 R3 j � 2 R+ ; x 2 Ag.A spheri
ally embedded graph G generates a tiling ST (G) of S2. Ea
h tilegives a 
one, and thus ST (G) yields a tiling of R3 into the union of 
ones:CT (G) = fC(A) j A 2 ST (G)g.De�nition 3.1. A fun
tion h : R3 ! R is 
alled a 3D lifting of a spheri
allyembedded graph G if it possesses the four properties:(1) h is 
ontinuous;(2) h(O) = 0;(3) h is pie
ewise linear;(4) h is linear on ea
h 
one of the tiling CT (G).A 3D lifting is non-trivial if it is not a globally linear fun
tion.A 3D lifting is tight if it is not a 3D lifting of some proper subgraph of G.That is, a tight lifting is not linear in neighborhood of inner points of the edgesof G.Given a graph G, the set of all its 3D liftings form a linear spa
e.An important example. We will show that a 
onvex polytope yields 
anon-i
ally a positively stressed spheri
ally embedded graph.Let K � R3 be a 
onvex polytope. Remember that its support fun
tionhK : R3 ! R is de�ned by hK(x) = maxy2K(x;y), where (x;y) stands for thes
alar produ
t. The support fun
tion is known to satisfy the four propertiesfrom De�nition 3.1 with respe
t to some 
oni
al tiling of R3 (the outer normalfan of K. Being interse
ted with S2, the 
oni
al tiling generates a tiling �Kof the sphere S2, whi
h we 
all the spheri
al fan of K. Its 1-skeleton is somespheri
ally embedded graph GK.The polytope K and its fan �K are 
ombinatorially dual. In parti
ular, theedges of GK are in one-to-one 
orresponden
e with the edges of K.Proposition 3.2. Let K � R3 be a 
onvex polytope. In the above notation,we have:(1) The support fun
tion hK is a tight 3D lifting of the graph GK.
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Figure 2(2) For ea
h plane e � R3 , the restri
tion hKje of the support fun
tion hKon the plane e is a 
onvex fun
tion. Equivalently, the graph of hK je is
on
ave down.(3) The fun
tion sK whi
h maps ea
h edge of the graph GK to the lengthof the 
orresponding edge of K is a positive stress of GK.(4) Vi
e versa, given a spheri
ally embedded graph G with a positive stresss, there exists a unique (up to a translation) 
onvex polytope K � R3su
h that G = GK and s = sK.Proof. The proposition is a mere reformulation of some 
lassi
al fa
ts on
onvex polytopes for whi
h we refer the reader to [19℄ and [2℄ for advan
eddetails. (1) reformulates the de�nitions of the outer normal fan and supportfun
tion. (2) means just the 
onvexity of hK.The statement (3) is obvious. Indeed, let pi be a vertex of GK. By duality,it 
orresponds to a fa
e F of K su
h that the outer normal of F equals pi.The edges of F 
orrespond by duality (and are orthogonal) to the edges ofGK in
ident to the vertex pi (see Fig. 2). The 
ondition of the De�nition 2.3means that the sum of edge ve
tors of the polygon F equals zero, whi
h istrue.Prove (4). By the above reason, a positively stressed graph G yields a
olle
tion of 
onvex polygons (for ea
h vertex pi, we have a polygon) whi
h
an be pat
hed together to form a 
onvex polytope (see Fig. 2). �Example 3.3. In the framework of Proposition 3.2 (4), a positively stressedexoti
 graph EG generates a line segment. Its length equals the value of thestress.Denote by SG the set of all pairs of type(a spheri
ally embedded graph G; a non-zero stress s of the graph G).To avoid degenerate 
ases, we 
laim that ea
h vertex ofG is at least trivalent.



8 GAIANE PANINAExoti
 graphs and the empty graph are also in
luded. The following de�ni-tion turns SG to a group whi
h is 
alled the group of stressed graphs.De�nition 3.4. The sum of two stressed graphs (G; s) = (G1; s1) + (G2; s2)is de�ned via the following pro
edure:� Taken together, the tilings ST (G1) and ST (G2) generate their 
ommonre�nement, some new tiling of S2. There appear new verti
es, and someof the edges get split. The 1-skeleton of the 
ommon re�nement 
an beviewed as a spheri
ally embedded graph G.� G has a natural stress de�ned as the sum of s1 and s2. More pre
isely,let l be an edge of G. If it lies on some edge of G1 and on no edgeof G2, then we assign to l the stress inherited from s1. If it lies on anedge of G1 and on an edge of G2, we take the sum of inherited stresses.However, the stress is not ne
essarily non-zero, so we need some furtherredu
tions.� To make the stress non-zero, we remove all zero stressed edges of G. Onthis previous step, sometimes appear redundant verti
es of two types.The verti
es of the �rst type are those possessing just two adja
entedges. In this 
ase the edges form the angle � and are equally stressed.The redundant verti
es of the se
ond type are isolated verti
es.� We remove all redundant verti
es.� The stressed graph obtained is 
alled the sum of the stressed graphs(G1; s1) and (G2; s2).Remark 3.5. Exoti
 graphs and the empty graph �t ni
ely in this s
heme.An exoti
 graph 
an be represented as a sum of two non-exoti
 ones. Thismeans that without them we would fail to get a group.Proposition 3.6. Ea
h stressed graph (G; s) 2 SG is the di�eren
e of sometwo positively stressed graphs from SG.Proof. For ea
h edge li;j of (G; s) with a negative stress s, we add to (G; s)a positively stressed exoti
 graph whose edge 
ontains li;j. (the stress shouldbe greater or equal than �s). This makes the sum positively stressed. �Summarizing the above, we get the following theorem.Theorem 3.7. (1) The group of stressed graphs SG is generated by f(GK; sK)g,where K ranges over the set of 
onvex polytopes in R3 .(2) The group of stressed graphs SG is 
anoni
ally isomorphi
 to the groupof virtual polytopes P (see Se
tion 1).(3) Therefore, we arrive at the same group of virtual polytopes as it wasde�ned by A. Pukhlikov and A. Khovanskii in [6℄. �De�nition 3.8. Keeping in mind the 
anoni
al isomorphism from Theorem3.7, we will 
all an element of the group of stressed graphs a virtual polytoperepresented by a stressed graph.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 9Theorem 3.9. (1) Given a spheri
ally embedded graph G, the spa
e of itsstresses is 
anoni
ally isomorphi
 to the spa
e of its 3D liftings.(2) A generi
 spheri
ally embedded Laman-plus-k graph has a non-trivial3D lifting for any k = 1; 2; :::(3) A spheri
ally embedded rigidity 
ir
uit has a tight 3D lifting.Proof. For the graph generated by a 
onvex polytope, (1) follows fromProposition 3.2 and Proposition 3.6. The general statement follows by linearityand Proposition 3.6.(2) and (3) follow from Theorem 3.7 and Proposition 2.9. �This theorem motivates the the following de�nition.De�nition 3.10. In the framework of Theorem 3.9, the 3D lifting h = h(G; s)of a virtual polytope represented by a stressed graph (G; s) is 
alled the supportfun
tion of (G; s).This de�nition is 
onsistent with the de�nition of the support fun
tion of a
onvex polytope K; that is, hK = h(GK; sK).4. Pointed graphs and hyperboli
 virtual polytopesNow we are ready to single out the 
lass of hyperboli
 virtual polytopes.De�nition 4.1. A surfa
e F � R3 is 
alled a saddle surfa
e if there is noplane 
utting a bounded 
onne
ted 
omponent o� F .Equivalently, a surfa
e F is saddle if no plane interse
ts F lo
ally at justone point.De�nition 4.2. A fun
tion h : R3 ! R is 
alled hyperboli
 if the graph of itsrestri
tion hje to any plane e is a saddle surfa
e.A virtual polytope represented by a stressed graph (G; s) is 
alled hyperboli
if the indu
ed 3D lifting h is hyperboli
.A spheri
ally embedded graph is 
alled pointed if ea
h of its verti
es isin
ident to an angle larger than � (see Fig. 3).Hyperboli
 polytopes and pointed graphs are 
losely related due to the fol-lowing simple fa
t.Lemma 4.3. [11℄ Given (G; s) 2 SG, if G is pointed, then (G; s) is hyperboli
.�We borrow the below de�nitions and proposition (in
luding the idea of itsproof) from the theory of planar pointed pseudo-triangulations (see [16, 17℄).A spheri
al polygon is 
alled a pseudo-triangle (respe
tively, pseudo-di-gon)if it has exa
tly three (respe
tively, exa
tly two) angles smaller than �.Proposition 4.4. Let G be a spheri
ally embedded graph with n verti
es and medges. Suppose that ea
h tile of T (G) is either a pseudo-triangle or a pseudo-di-gon. Then m = 2n� 6 + d, where d is the number of pseudo-di-gons in thetiling T (G).
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Figure 3. A pointed graph

Figure 4. A pseudo-di-gonProof. Denote by 
 the total number of 
onvex angles (i.e., the angles smallerthan �) of all tiles from T (G). Denote by t the number of pseudo-triangles.We haven�m+ d+ t = 2 (Euler's formula),
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Figure 5. A pointed rigidity 
ir
uit. The �gure depi
ts oneside of the sphere, the other side looks analogously.
 = 2d+ 3t (�rst 
ount of 
onvex angles), and
 = 2m� n (se
ond 
ount of 
onvex angles),whi
h imply together the required. �Sin
e we aim at hyperboli
 polytopes, we are interested in stressed pointedembedded graphs.Re
all that a planar pointed graph never has a non-zero stress (see [17℄).We sket
h here the proof whi
h appeals to the theory of saddle surfa
e.If a pointed graph has an equilibrium stress, then it has a 3D lifting. Hen
eits graph is a pie
ewise linear surfa
e whi
h is saddle (due to the pointedproperty) and whi
h 
oin
ides with the plane everywhere ex
ept for a boundedset. The latter is impossible.The 
ru
ial property of pointed spheri
ally embedded graphs is that someof them (a
tually, many of them) have a non-trivial 3D lifting. This meansthat there exist many hyperboli
 virtual polytopes.Example 4.5. Figure 6 presents a spheri
ally embedded rigidity 
ir
uit. It has24 verti
es and 46 edges. The graph generates a tiling with four pseudo-di-gons(marked grey). Due to Proposition 2.9, it has a tight 3D lifting.In the framework of the above theory, it be
omes quite easy to 
onstru
t apointed rigidity 
ir
uit G. Indeed, we know in advan
e that the tiling T (G)should 
ontain four pseudo-di-gons. So one has to pla
e on the sphere four dis-joint pseudo-di-gons and after that 
omplete the drawing by a pointed pseudo-triangulation of their 
omplement. This is not tri
ky at all. It should be
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Figure 6. A pointed Laman-plus-5 graphmentioned how mu
h e�orts were involved to 
onstru
t the �rst examples ofhyperboli
 polytopes (see [11, 12, 9℄).Example 4.6. Fig. 6 presents a pro
edure whi
h leads to a pointed embeddedLaman-plus-k graph (on the left). Its spa
e of stresses is k-dimensional.Example 4.7. Figure 7 presents another spheri
ally embedded rigidity 
ir
uit.Similarly to the Example 4.5, the graph generates a tiling whi
h has fourpseudo-di-gons, but this time the pseudo-di-gons lie in a di�erent position inthe following sense.It is easy to observe that ea
h pseudo-di-gon 
ontains a great semi
ir
le.Given a pointed embedding of a rigidity 
ir
uit G, �x a great semi
ir
le for
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Figure 7. Another pointed rigidity 
ir
uit

Figure 8. Two non-isotopi
 
on�gurations of great 
ir
les
ea
h of the pseudo-di-gons of T (G). This yields a 
on�guration of four disjointgreat semi
ir
les on S2.The Example 4.5 and Example 4.7 give 
on�gurations from Fig. 8. (the�rst one and the se
ond one respe
tively). These 
on�gurations are known tobe non-isotopi
 (see [14℄), i.e., there is no 
ontinuous motion whi
h brings oneof them to another avoiding 
rossings.These di�erent examples have yielded examples of non-isotopi
 hyperboli
h�erissons (dis
ussed in [13℄ and [5℄). We re
all that the existen
e of just onesu
h surfa
e was an open problem for a long time. The existen
e of the se
ondisotopy type was a new surprise. In the framework of the present paper, we
onstru
t it easily.
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