
POINTED SPHERICAL TILINGS AND HYPERBOLICVIRTUAL POLYTOPESGAIANE PANINAAbstrat. The paper presents an introdution to the theory of hyperbolivirtual polytopes from the ombinatorial rigidity viewpoint. Namely, wegive a shortut for a reader aquainted with the notions of Laman graph,3D lifting, and pointed tiling.From this viewpoint, a hyperboli virtual polytope is a stressed pointedgraph embedded in the sphere S2.The advantage of suh a presentation is that it gives an alternative andthe most onvining proof of existene of hyperboli polytopes.1. IntrodutionIn this paper, we give an alternative presentation of the theory of hyperbolivirtual polytopes.The reader should not onfuse them with polytopes lying in a hyperbolispae. In the ontext of the paper, the term "hyperboli" means "saddle". Insome sense, hyperboli polytopes are opposite to onvex polytopes by theironvexity property.This theory arose originally as a tool for onstruting ounterexamples (see [4,11, 12, 20℄; see also the very �rst ounterexample onstruted without hyper-boli polytopes [9℄) to the following uniqueness onjeture, proven by A.D.Alexandrov (see [1℄) for analyti surfaes.Uniqueness onjeture for smooth onvex surfaes.Let K � R3 be a smooth losed onvex surfae. If for a onstant C, at everypoint of �K, we have R1 � C � R2, then K is a ball. (R1 and R2 stand forthe prinipal urvature radii of �K).We refer the reader to [11℄ for the relationship between the onjeture andthe theory of hyperboli polytopes.By a onvex polytope we mean the onvex hull of some �nite set of points. De-note by P the set of all onvex polytopes in R3 . Equipped with the Minkowskiaddition 
, the set P is a ommutative semigroup with the unit element fOg.The set of all formal Minkowski di�erenes P� = fK 
 L�1 j K;L 2 Pg is agroup whih is alled the group of virtual polytopes.Key words and phrases. Laman graph, 3D lifting, pointed pseudo-triangulation, virtualpolytope, saddle surfae, hyperboli polytope. MSC 52B10, 52B70.1



2 GAIANE PANINASimilarly to rational frations, we identify K
L�1 and K 0
 (L0)�1 whereasK 
 L0 = K 0 
 L.The elements of P�, whih are alled virtual polytopes, are not mere formalexpressions. They an be interpreted geometrially, and multiple geometriinterpretations are ruial for their study.The �rst geometri interpretation appeared in the paper [6℄. From its view-point, a virtual polytope is a pieewise onstant funtion with some spei�properties (a onvex hain).Alternatively, in the framework of the present paper, a virtual polytope isa stressed spherially embedded graph. We turn the set of all stressed graphsinto a group (Setion 3), whih is shown (Theorem 3.7) to be anoniallyisomorphi to the group of virtual polytopes.Further, among the virtual polytopes we single out the lass of hyperbolivirtual polytopes (for short, hyperboli polytopes).Very roughly, hyperboli polytopes are de�ned to be as non-onvex as possi-ble. By de�nition, the graph of the support funtion of a hyperboli polytopeis a saddle surfae (in ontrast to onvex polytopes, for whih the graph of thesupport funtion is a onvex surfae).The ruial link to the pointed tilings is the following: if a spherially em-bedded stressed graph is pointed, then the orresponding virtual polytope ishyperboli (Lemma 4.3).The theory of hyperboli polytopes has the following urious feature: themost non-trivial and important fat is the existene and diversity of hyperbolipolytopes (see [20℄ for some 3D images). In other words, it took a lot of e�ortsto onstrut di�erent examples of hyperboli polytopes.The advantage of the approah of the paper is that it gives an alternativeand the most onvining proof of existene of hyperboli polytopes.The paper �rst pulls the theory of planar pointed tilings to the sphere S2.Neessary fats of graphs rigidity are transferred onto the sphere due to somesimple adjustments of Setion 2 and the papers [2℄ and [18℄. The only di�erenebetween the spherial and the planar ase (whih however hanges the situationvery muh) is the existene of pseudo-di-gons. Namely, eah planar polygonhas at least three onvex angles, whereas on the sphere there exist polygonswith just two onvex angles (see Fig. 4).This fat hanges Laman-type ounts for pointed tilings. As a onsequene,there exist pointed spherially embedded Laman-plus-one (and even Laman-plus-k graphs (see Example 4.5 and Example 4.6). They possess a non-trivialsaddle 3D lifting. By de�nition, this is nothing but a hyperboli polytope.Thus a hard problem of onstruting hyperboli polytopes (whih originallywere 3D objets) is redued to onstrution of a spherially embedded pointedgraph.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 3This tehnique has already led to a new result. Namely, the author obtaineda re�nement of A.D Alexandrov theorem on 3D polytopes with mutually non-insertable faes (see [14℄).Aknowledgment. This researh was supported by NSF CCF-0430990. Theauthor is also grateful to the Bielefeld University, SFB 701, where this studywas ompleted.2. Graphs on the sphere. Spae of equilibrium stresses.A graph is a pair G = (V;E), where V = f1; 2; :::; ng is a �nite set, E is aset of unordered pairs (i; j) suh that i; j = 1; :::; n, and i 6= j. The elementsof V and E are alled verties and edges respetively.A subgraph G0 of G is alled proper if G 6= G0.By a graph embedded in R3 we mean a triple G = (V;E; p), where V and Eare as above, and p is an injetive mapping p : V ! R3 .The points p(i) are denoted for short by pi and are alled verties of thegraph. The segments pipj for (i; j) 2 E are alled the edges of the graph andare assumed to be non-rossing.Denote by S2 � R3 the unit sphere entered at O. Its points we identifywith their radius vetors.By a spherially embedded graph we mean a quadruple G = (V;E; p; l),where V and E are as above, p is an injetive mapping p : V ! S2. Thepoints pi = p(i) are alled verties of the graph. A bit more are is neededhere to de�ne edges.The funtion l de�ned on the set E maps eah pair (i; j) 2 E to somegeodesi segment with endpoints at pi and pj. The segments l(i; j) are denotedfor short by lij and are alled edges of the graph. We don't laim that lij are theshortest geodesi segments (i.e., the minor ar of a great irle) onneting piand pj, so there are two possible edges with �xed endpoints (or even in�nitelymany possible edges for antipodal endpoints).We assume that the edges lij are non-rossing.Besides, in the setion, we assume that all embeddings are generi [3℄. Inits general stating this means that the vertex oordinates are algebraiallyindependent. In partiular, this means that for a spherially embedded graph,there are no antipodal verties.Example 2.1. It is onvenient to onsider a great irle on S2 as an embeddedgraph (with no verties and a single losed edge) as well. We all it an exotigraph EG.We will use a slightly modi�ed (in omparison with [3℄) de�nition of an equi-librium stress of a graph G in R3 and its natural adjustment for a spheriallyembedded graph. However, the below de�nition is in some sense equivalent tothe lassial one.
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Figure 1De�nition 2.2. Let G = (V;E; p) be a graph embedded in R3 . A mappings : E ! R is alled an equilibrium stress (or shortly, a stress) of G if for eahi, we haveP(ij)2E s(i; j)uij = 0, where uij = ��!pipjjpipj j .A stress is alled non-trivial if it is not identially zero.A stress is alled non-zero if it is non-zero on eah edge.The spae of all stresses of G we denote by S(G).De�nition 2.3. Let G = (V;E; p; l) be a spherially embedded graph. Amapping s : E ! R is alled an equilibrium stress (or shortly, a stress) of G iffor eah i, we haveP(ij)2E s(i; j)uij = 0, where uij are the unit vetors tangent to li;j at thepoint pi. Their diretion are hosen as is depited in Fig. 1.The spae of all stresses of G we denote by S(G).De�nition 2.4. We assume that the exoti graph EG possesses a stress. Itan be any real number assigned to its only edge.The following onstrution redues the stress of a spherially embeddedgraph G to a stress of some graph embedded in R3. The ideas are borrowedfrom [2℄ and [18℄.Given a graphG embedded in S2, we add the point pn+1 = O as a new vertex.We next replae the edges of G by orresponding line segments. Finally, weadd the edges (i; n+1) for i = 1; :::; n as new edges and denote the embeddedgraph obtained by G = (V ;E; p).Proposition 2.5. The spaes of stresses of S(G) and S(G) are anoniallyisomorphi.Proof. Let s be a stress of G. De�ne the stress s of G as follows. Fori; j < n + 1, let �i;j be the angle between ��!pipj and uij (see Fig. 1).Put s(i; j) = (s(i; j)= os�ij if jli;jj � �;�s(i; j)= os�ij otherwise.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 5Put also s(i; n + 1) = �Pnj=1 s(i; j) tan�ij. Show that his mapping is anisomorphism between S(G) and S(G). We hek �rst that s is a stress ofG. The ondition P(ij)2E s(i; j)uij = 0 at a vertex pi for i � n is valid byonstrution.Besides, the sum of all vetors s(i; j)uij equals zero. Therefore, the onditionP(ij)2E s(i; j)uij = 0 is also valid for the vertex pn+1 = O. To onlude theproof, observe that the desribed above mapping S(G) ! S(G) is invertible.That is, given a stress s of G, the stress s an be restored. �De�nition 2.6. ( [3℄) A graph G = (V;E) with n verties and m edges is aLaman graph if� m = 2n� 3, and� eah subset V 0 of k verties spans not more than 2k�3 edges. (We saythat an edge (i; j) 2 E is spanned by V 0 if i; j 2 V 0.)De�nition 2.7. ( [7℄) A Laman graph with one extra edge is a Laman-plus-one graph. Similarly, a Laman graph with k extra edges is a Laman-plus-kgraph.De�nition 2.8. ( [7℄) A graph G is a rigidity iruit if the removal of any ofits edges yields a Laman graph. Equivalently, G is a rigidity iruit if it is aLaman-plus-one graph and has no Laman-plus-one proper subgraph.The below proposition is a spherial version of some lassial fats.Proposition 2.9. Let G be a generi spherially embedded graph.(1) If G is a Laman graph, then G is in�nitesimally rigid.(2) If G is a Laman-plus-one graph, then G possesses a non-trivial (i.e.,not identially zero) stress.(3) If G is a rigidity iruit, then G possesses a non-zero stress.Proof. 1. The rigidity of generi Laman graphs is valid for graphs embeddedin the plane (see [3℄). The paper [18℄ proves that it is also valid for spheriallyembedded graphs. More preisely, it is proven that in�nitesimal motions ofa spherially embedded graph are in a one-to-one orrespondene with thein�nitesimal motions of its projetion on the plane.The paper [18℄ treats only those spherial embeddings that �t on an openhemisphere. Still the general ase is easily redued to a hemispherial one viathe following trik.Fix a hemisphere S+. For a spherially embedded graph G = (V;E; p; l),onstrut the new graph G+ = (V;E; p+; l+) suh that p+i 2 S+; and p+i = �pidepending on whih of the points pi and �pi belongs to S+. Finally, lij isde�ned to be the segment lying also in S+.This mapping preserves rigidity but does not maintain non-rossing prop-erty.2. Denote by n the number of verties ofG and bym the number of its edges.In [18℄ it is proven that G is in�nitesimally rigid. Together with Corollary 2.3.1from [3℄ applied to the graph G, this diretly implies that



6 GAIANE PANINA6 = 3(n+ 1)� (m + n) + dim(S(G)).Therefore, dim(S(G)) = 1.3. Suppose the ontrary, i.e., that G has a non-trivial stress whih admitszero values on some of the edges. Removal of the zero stressed edges yields aproper subgraph of G with a non-trivial stress. It is at least a Laman-plus-onegraph. A ontradition. �3. 3D liftings for graphs on the sphereA (spherial) polygon on the sphere S2 � R3 is a domain of S2 boundedby a losed non-rossing polygonal line (its edges are assumed to be geodesiars).A spherial polygon A spans a one C(A) in R3 with the apex at O. Namely,we put C(A) = f�x 2 R3 j � 2 R+ ; x 2 Ag.A spherially embedded graph G generates a tiling ST (G) of S2. Eah tilegives a one, and thus ST (G) yields a tiling of R3 into the union of ones:CT (G) = fC(A) j A 2 ST (G)g.De�nition 3.1. A funtion h : R3 ! R is alled a 3D lifting of a spheriallyembedded graph G if it possesses the four properties:(1) h is ontinuous;(2) h(O) = 0;(3) h is pieewise linear;(4) h is linear on eah one of the tiling CT (G).A 3D lifting is non-trivial if it is not a globally linear funtion.A 3D lifting is tight if it is not a 3D lifting of some proper subgraph of G.That is, a tight lifting is not linear in neighborhood of inner points of the edgesof G.Given a graph G, the set of all its 3D liftings form a linear spae.An important example. We will show that a onvex polytope yields anon-ially a positively stressed spherially embedded graph.Let K � R3 be a onvex polytope. Remember that its support funtionhK : R3 ! R is de�ned by hK(x) = maxy2K(x;y), where (x;y) stands for thesalar produt. The support funtion is known to satisfy the four propertiesfrom De�nition 3.1 with respet to some onial tiling of R3 (the outer normalfan of K. Being interseted with S2, the onial tiling generates a tiling �Kof the sphere S2, whih we all the spherial fan of K. Its 1-skeleton is somespherially embedded graph GK.The polytope K and its fan �K are ombinatorially dual. In partiular, theedges of GK are in one-to-one orrespondene with the edges of K.Proposition 3.2. Let K � R3 be a onvex polytope. In the above notation,we have:(1) The support funtion hK is a tight 3D lifting of the graph GK.
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Figure 2(2) For eah plane e � R3 , the restrition hKje of the support funtion hKon the plane e is a onvex funtion. Equivalently, the graph of hK je isonave down.(3) The funtion sK whih maps eah edge of the graph GK to the lengthof the orresponding edge of K is a positive stress of GK.(4) Vie versa, given a spherially embedded graph G with a positive stresss, there exists a unique (up to a translation) onvex polytope K � R3suh that G = GK and s = sK.Proof. The proposition is a mere reformulation of some lassial fats ononvex polytopes for whih we refer the reader to [19℄ and [2℄ for advaneddetails. (1) reformulates the de�nitions of the outer normal fan and supportfuntion. (2) means just the onvexity of hK.The statement (3) is obvious. Indeed, let pi be a vertex of GK. By duality,it orresponds to a fae F of K suh that the outer normal of F equals pi.The edges of F orrespond by duality (and are orthogonal) to the edges ofGK inident to the vertex pi (see Fig. 2). The ondition of the De�nition 2.3means that the sum of edge vetors of the polygon F equals zero, whih istrue.Prove (4). By the above reason, a positively stressed graph G yields aolletion of onvex polygons (for eah vertex pi, we have a polygon) whihan be pathed together to form a onvex polytope (see Fig. 2). �Example 3.3. In the framework of Proposition 3.2 (4), a positively stressedexoti graph EG generates a line segment. Its length equals the value of thestress.Denote by SG the set of all pairs of type(a spherially embedded graph G; a non-zero stress s of the graph G).To avoid degenerate ases, we laim that eah vertex ofG is at least trivalent.



8 GAIANE PANINAExoti graphs and the empty graph are also inluded. The following de�ni-tion turns SG to a group whih is alled the group of stressed graphs.De�nition 3.4. The sum of two stressed graphs (G; s) = (G1; s1) + (G2; s2)is de�ned via the following proedure:� Taken together, the tilings ST (G1) and ST (G2) generate their ommonre�nement, some new tiling of S2. There appear new verties, and someof the edges get split. The 1-skeleton of the ommon re�nement an beviewed as a spherially embedded graph G.� G has a natural stress de�ned as the sum of s1 and s2. More preisely,let l be an edge of G. If it lies on some edge of G1 and on no edgeof G2, then we assign to l the stress inherited from s1. If it lies on anedge of G1 and on an edge of G2, we take the sum of inherited stresses.However, the stress is not neessarily non-zero, so we need some furtherredutions.� To make the stress non-zero, we remove all zero stressed edges of G. Onthis previous step, sometimes appear redundant verties of two types.The verties of the �rst type are those possessing just two adjaentedges. In this ase the edges form the angle � and are equally stressed.The redundant verties of the seond type are isolated verties.� We remove all redundant verties.� The stressed graph obtained is alled the sum of the stressed graphs(G1; s1) and (G2; s2).Remark 3.5. Exoti graphs and the empty graph �t niely in this sheme.An exoti graph an be represented as a sum of two non-exoti ones. Thismeans that without them we would fail to get a group.Proposition 3.6. Eah stressed graph (G; s) 2 SG is the di�erene of sometwo positively stressed graphs from SG.Proof. For eah edge li;j of (G; s) with a negative stress s, we add to (G; s)a positively stressed exoti graph whose edge ontains li;j. (the stress shouldbe greater or equal than �s). This makes the sum positively stressed. �Summarizing the above, we get the following theorem.Theorem 3.7. (1) The group of stressed graphs SG is generated by f(GK; sK)g,where K ranges over the set of onvex polytopes in R3 .(2) The group of stressed graphs SG is anonially isomorphi to the groupof virtual polytopes P (see Setion 1).(3) Therefore, we arrive at the same group of virtual polytopes as it wasde�ned by A. Pukhlikov and A. Khovanskii in [6℄. �De�nition 3.8. Keeping in mind the anonial isomorphism from Theorem3.7, we will all an element of the group of stressed graphs a virtual polytoperepresented by a stressed graph.



POINTED TILINGS AND HYPERBOLIC POLYTOPES 9Theorem 3.9. (1) Given a spherially embedded graph G, the spae of itsstresses is anonially isomorphi to the spae of its 3D liftings.(2) A generi spherially embedded Laman-plus-k graph has a non-trivial3D lifting for any k = 1; 2; :::(3) A spherially embedded rigidity iruit has a tight 3D lifting.Proof. For the graph generated by a onvex polytope, (1) follows fromProposition 3.2 and Proposition 3.6. The general statement follows by linearityand Proposition 3.6.(2) and (3) follow from Theorem 3.7 and Proposition 2.9. �This theorem motivates the the following de�nition.De�nition 3.10. In the framework of Theorem 3.9, the 3D lifting h = h(G; s)of a virtual polytope represented by a stressed graph (G; s) is alled the supportfuntion of (G; s).This de�nition is onsistent with the de�nition of the support funtion of aonvex polytope K; that is, hK = h(GK; sK).4. Pointed graphs and hyperboli virtual polytopesNow we are ready to single out the lass of hyperboli virtual polytopes.De�nition 4.1. A surfae F � R3 is alled a saddle surfae if there is noplane utting a bounded onneted omponent o� F .Equivalently, a surfae F is saddle if no plane intersets F loally at justone point.De�nition 4.2. A funtion h : R3 ! R is alled hyperboli if the graph of itsrestrition hje to any plane e is a saddle surfae.A virtual polytope represented by a stressed graph (G; s) is alled hyperboliif the indued 3D lifting h is hyperboli.A spherially embedded graph is alled pointed if eah of its verties isinident to an angle larger than � (see Fig. 3).Hyperboli polytopes and pointed graphs are losely related due to the fol-lowing simple fat.Lemma 4.3. [11℄ Given (G; s) 2 SG, if G is pointed, then (G; s) is hyperboli.�We borrow the below de�nitions and proposition (inluding the idea of itsproof) from the theory of planar pointed pseudo-triangulations (see [16, 17℄).A spherial polygon is alled a pseudo-triangle (respetively, pseudo-di-gon)if it has exatly three (respetively, exatly two) angles smaller than �.Proposition 4.4. Let G be a spherially embedded graph with n verties and medges. Suppose that eah tile of T (G) is either a pseudo-triangle or a pseudo-di-gon. Then m = 2n� 6 + d, where d is the number of pseudo-di-gons in thetiling T (G).
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Figure 3. A pointed graph

Figure 4. A pseudo-di-gonProof. Denote by  the total number of onvex angles (i.e., the angles smallerthan �) of all tiles from T (G). Denote by t the number of pseudo-triangles.We haven�m+ d+ t = 2 (Euler's formula),
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Figure 5. A pointed rigidity iruit. The �gure depits oneside of the sphere, the other side looks analogously. = 2d+ 3t (�rst ount of onvex angles), and = 2m� n (seond ount of onvex angles),whih imply together the required. �Sine we aim at hyperboli polytopes, we are interested in stressed pointedembedded graphs.Reall that a planar pointed graph never has a non-zero stress (see [17℄).We sketh here the proof whih appeals to the theory of saddle surfae.If a pointed graph has an equilibrium stress, then it has a 3D lifting. Heneits graph is a pieewise linear surfae whih is saddle (due to the pointedproperty) and whih oinides with the plane everywhere exept for a boundedset. The latter is impossible.The ruial property of pointed spherially embedded graphs is that someof them (atually, many of them) have a non-trivial 3D lifting. This meansthat there exist many hyperboli virtual polytopes.Example 4.5. Figure 6 presents a spherially embedded rigidity iruit. It has24 verties and 46 edges. The graph generates a tiling with four pseudo-di-gons(marked grey). Due to Proposition 2.9, it has a tight 3D lifting.In the framework of the above theory, it beomes quite easy to onstrut apointed rigidity iruit G. Indeed, we know in advane that the tiling T (G)should ontain four pseudo-di-gons. So one has to plae on the sphere four dis-joint pseudo-di-gons and after that omplete the drawing by a pointed pseudo-triangulation of their omplement. This is not triky at all. It should be
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Figure 6. A pointed Laman-plus-5 graphmentioned how muh e�orts were involved to onstrut the �rst examples ofhyperboli polytopes (see [11, 12, 9℄).Example 4.6. Fig. 6 presents a proedure whih leads to a pointed embeddedLaman-plus-k graph (on the left). Its spae of stresses is k-dimensional.Example 4.7. Figure 7 presents another spherially embedded rigidity iruit.Similarly to the Example 4.5, the graph generates a tiling whih has fourpseudo-di-gons, but this time the pseudo-di-gons lie in a di�erent position inthe following sense.It is easy to observe that eah pseudo-di-gon ontains a great semiirle.Given a pointed embedding of a rigidity iruit G, �x a great semiirle for
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Figure 7. Another pointed rigidity iruit

Figure 8. Two non-isotopi on�gurations of great irles
eah of the pseudo-di-gons of T (G). This yields a on�guration of four disjointgreat semiirles on S2.The Example 4.5 and Example 4.7 give on�gurations from Fig. 8. (the�rst one and the seond one respetively). These on�gurations are known tobe non-isotopi (see [14℄), i.e., there is no ontinuous motion whih brings oneof them to another avoiding rossings.These di�erent examples have yielded examples of non-isotopi hyperbolih�erissons (disussed in [13℄ and [5℄). We reall that the existene of just onesuh surfae was an open problem for a long time. The existene of the seondisotopy type was a new surprise. In the framework of the present paper, weonstrut it easily.
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