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1. Introduction

In this paper we construct a symmetric monoidal smash product of Γ-spaces mod-
elling the smash product of connective spectra. For the corresponding theory of
ring-spectra, we refer the reader to [Sch].

We give a brief review of Γ-spaces. If n is a non-negative integer, the pointed
set n+ is the set {0, . . . , n} with 0 as the basepoint. The category Γop is the full
subcategory of the category of pointed sets, with objects all n+. The category GS

of Γ-spaces is the full subcategory of the category of functors from Γop to pointed
simplicial sets, with objects all F such that F (0+) % 0+. A map of Γ-spaces is a
strict weak equivalence if it gives a weak equivalence of simplicial sets for every n+

in Γop. Segal [Se] introduced Γ-spaces and showed that they give rise to a homotopy
category equivalent to the homotopy category of connective spectra. Bousfield and
Friedlander [BF] later provided model category structures for Γ-spaces. We follow
the terminology of [BF] (only the class of special Γ-spaces, and its subclass of very
special Γ-spaces, are considered in [Se], where they are called ‘Γ-spaces’ and ‘Γ-
spaces A such that A(1) has a homotopy inverse’). Segal proved that the homotopy
category of connective spectra is equivalent to the category with objects the very
special Γ-spaces and morphisms obtained by inverting the strict weak equivalences
of Γ-spaces. Bousfield and Friedlander proved that the category obtained from all
of GS by inverting the stable weak equivalences (Definition 5·4) is again equivalent
to the homotopy category of connective spectra, in such a way that very special
Γ-spaces correspond to omega-spectra.

One advantage of the approach of [BF] in relating Γ-spaces and spectra, is that GS

has the structure of a closed simplicial model category and this structure is related by
a Quillen-pair of functors to a similar one that the category of spectra has. The main
results of this paper can be summarized as follows: the smash product of Γ-spaces
is compatible with the model category structures of [BF], and corresponds to the
smash product of spectra under the equivalence of homotopy categories of [BF]. We
remark however that the proofs of the main results of this paper use neither [BF]
nor model categories (the main prerequisites for them are some basic facts about
bisimplicial sets, although Sections 2–4, and 6, do not use much more simplicial
theory than the definition of simplicial objects). The parts of this paper labelled
‘remark’ or ‘example’ may have more prerequisites, and arguments there contain,
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in general, less details than the rest of the paper. On the other hand, the rest of the
paper (which contains all the main results) is independent from these parts.

This paper is organized as follows. In Section 2 we define the smash product of
Γ-spaces, and prove that it gives GS the structure of a symmetric monoidal cate-
gory. In Section 3 we study the filtration of a Γ-space by its skeleta (Definition 3·1).
The skeleta of a Γ-space are also considered in [BF]. We prove that they are the
stages of a filtration (i.e. that every skeleton injects in the next one), and describe
in Theorem 3·10 how one stage of the filtration is built from the next by attaching
representable Γ-spaces.

The results of Section 3 are useful in reducing the proof of whether a certain prop-
erty is shared by all Γ-spaces, to proving that the representable Γ-spaces have that
property. Questions about representable Γ-spaces are usually very easy to answer, be-
cause the representable Γ-spaces are very well-known functors. There is one of them
for each non-negative integer n, namely the functor Γn that takes the pointed set X
to the n-fold cartesian product of X with itself. Reduction to representable Γ-spaces
can be used to give easy proofs of certain interesting facts, some of which seem to be
more well-known than others. An example of the first kind (see Proposition 5·20) is
that every Γ-space is a homotopy functor when extended degreewise (Definition 2·10).
An example of the second kind (see Proposition 5·21) is that, for any Γ-space F
and any connected space X, the assembly map from S1 ∧F (X) to F (S1 ∧X) (Defini-
tion 2·12) is as connected as the suspension of S1∧X∧X (in fact, one may replace S1

by any connected space).
Reduction to representable Γ-spaces is used in Sections 4 and 5, to prove that

smashing by a cofibrant Γ-space (Definition 3·1) preserves cofibrations (see Theo-
rem 4·6, which is actually a little stronger), strict weak equivalences (Theorem 5·1),
and stable weak equivalences (Theorem 5·12), and that the smash product of Γ-
spaces corresponds to the smash product of spectra if one of the factors is cofibrant
(Theorem 5·11). In the last section we prove that our skeleta and our cofibrations
agree with those in [BF] (this is not needed in the rest of the paper).

There is an interesting subclass of the class of all cofibrant Γ-spaces, consisting
of the Q-cofibrant Γ-spaces (see [Sch], especially Lemma A·3 and the paragraph
immediately preceding it). The fact that the cofibrant Γ-spaces are the cofibrant
objects in strict and stable model category structures for GS [BF], has its coun-
terpart in the fact that the Q-cofibrant Γ-spaces are also the cofibrant objects in
strict and stable model category structures for GS. The strict structure is a spe-
cial case of a general construction of Quillen [Q], and the stable structure is con-
structed by Schwede [Sch]. Being Q-cofibrant is a relatively strong condition on a
Γ-space. For example, if the Γ-space is also discrete, then it must be a sum of repre-
sentable Γ-spaces. On the other hand, this implies that the strict and stable notions
of ‘Q-fibrant’ are weaker than the corresponding notions in [BF] and this makes
the ‘Q-model category structures’ ideal for the applications of this smash product
in [Sch]. We work with the weaker notions of ‘cofibrant’ in this paper, partly be-
cause we obtain more general theorems this way and partly because there are inter-
esting cofibrant Γ-spaces which are not Q-cofibrant (for example, certain Γ-spaces
that Segal associates to categories with finite sums; see Example 3·5). There are
many more examples of cofibrant Γ-spaces which are not Q-cofibrant (see Exam-
ple 3·3).
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The definition and the basic properties of this smash product have been discovered

independently by J. Smith (unpublished). Most of the results of Section 2 have been
known to category-theorists for a long time and in greater generality (cf. [D]).

2. Smash products and function objects

The following conventions will save us a lot of writing. A space is a pointed simpli-
cial set. A space is discrete if its underlying simplicial set is constant. A map always
preserves all the available structure. For example, if X and Y are spaces, then a map
X → Y is the same thing as a pointed simplicial map X → Y .

We choose a smash product functor from Γop×Γop to Γop, extend it to one for all
pointed sets and write X ∧ Y for the smash product of the pointed sets X and Y .
Such a functor exists, because Γop is equivalent to the category of finite pointed sets.
We write X+ for the space obtained from the simplicial set X by attaching a disjoint
basepoint. If F is a Γ-space and Y is a space, the Γ-space F ∧Y takes n+ to F (n+)∧Y .
We write S∗ for the category of spaces. We write C(A,B) for the set of morphisms
from A to B in a category C.

2·1. Definition. We introduce function objects in GS. The first one is the pointed
set GS(F, F ′). The second is the space hom (F, F ′) that has GS(F ∧ (∆q)+, F ′) as
its pointed set of q-simplices. The third function object is the Γ-space Hom (F, F ′)
that takes m+ to hom (F, F ′(m+∧ )), where we define F ′(m+∧ ) evaluated at n+ to
be F ′(m+ ∧ n+).

2·2. Theorem. There exists a functor from GS×GS to GS, whose value at (F, F ′)
we call the smash product F ∧ F ′ of F and F ′, and an isomorphism

GS(F ∧ F ′, F ′′)%GS(F,Hom (F ′, F ′′))

natural in the Γ-spaces F , F ′ and F ′′.

Proof. We need the category GGS of Γ×Γ-spaces. It is the category of functors
from Γop×Γop to S∗ taking (0+, 0+) to a point. Given F ′′ in GS, let RF ′′ in GGS

take (m+, n+) to F ′′(m+ ∧ n+). The external smash product F ∧̃F ′ of the Γ-spaces F
and F ′ takes (m+, n+) to F (m+) ∧ F ′(n+). Note that

GS(F,Hom (F ′, F ′′))%GGS(F ∧̃F ′, RF ′′).
This isomorphism is similar to the one in

S∗(X,hom∗ (Y,Z))%S∗(X ∧ Y,Z),

where the space hom∗ (X,Y ) has S∗(X ∧ (∆q)+, Y ) as its pointed set of q-simplices
for X and Y spaces. Thus, if R has a left adjoint L: GGS → GS, then we may
take F ∧F ′ to be L(F ∧̃F ′). But L does exist. Given F ′′′ in GGS let LF ′′′(n+) be the
colimit over all i+ ∧ j+ → n+ of F ′′′(i+, j+) (to see that LF ′′′(0+) is a point, note that
the identity map of 0+ is terminal among the maps of the form i+ ∧ j+ → 0+).

2·3. Corollary. There exist isomorphisms

hom (F ∧ F ′, F ′′)%hom (F,Hom (F ′, F ′′))

Hom (F ∧ F ′, F ′′)%Hom (F,Hom (F ′, F ′′))

natural in the Γ-spaces F , F ′, and F ′′.
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Proof. The first isomorphism is similar to the one in Theorem 2·2. For the second,

use the first and the isomorphism Hom (F ′, F ′′)(n+∧ )%Hom (F ′, F ′′(n+∧ )).

2·4. Remark. The smash product of the Γ-spaces F and F ′ is the universal Γ-
space F ′′ with a map of Γ×Γ-spaces F ∧̃F ′ → RF ′′. We indicate below a similarity
between this definition and the definition of the tensor product of abelian groups.
We first recall from [Se] that abelian groups embed as a full subcategory of Γ-spaces.

Fix an abelian group A. It determines a Γ-space HA, where HA(n+) = A⊗ Z̃[n+]
and Z̃[n+] is the reduced free abelian group on the pointed set n+. Fix another abelian
group A′. A map of sets f: A→ A′ is a group homomorphism if and only if there is
a map of Γ-spaces

f̃ :HA→HA′

such that f̃1+ = f . Further, this f̃ is unique, if it exists.
This observation expresses linearity in terms of Γ-spaces. The following observa-

tion does this for bilinearity. Fix a third abelian group A′′. A map of sets g:A ∧ A′→
A′′ is bilinear if and only if there is a map of Γ×Γ-spaces

g̃:HA ∧̃HA′→RHA′′

such that g̃(1+,1+) = g. Further, this g̃ is unique, if it exists.

2·5. Definition. Given n+ in Γop, define the Γ-space Γn by Γn(m+) = Γop(n+,m+).

2·6. Lemma. If n is a non-negative integer and F is a Γ-space, then hom (Γn, F ) is
isomorphic to F (n+).

Proof. This follows from the Yoneda lemma, the isomorphism

GS(Γn ∧ (∆q)+, F )%SETΓop×∆op

(Γn×∆q, F )

(where we wrote F also for the associated functor from Γop×∆op to sets) and the fact
that (n+, [q] ) represents Γn×∆q.

2·7. Definition. The Γ-space S is the inclusion of Γop in the category of spaces (we
identify a pointed set with its associated discrete space).

2·8. Proposition. The Γ-spaces S and Γ1 are isomorphic.

2·9. Lemma. The above smash product is associative and commutative, up to natural
isomorphism and S acts as a unit, up to natural isomorphism.

Proof. We claim that F ∧ S%F . This follows from Theorem 2·2, Proposition 2·8
and the fact that Hom (Γ1, F ′′) is isomorphic to F ′′ (this is essentially a special case
of Lemma 2·6).

To check that F ∧ F ′%F ′ ∧ F , we check that GS(F ∧ F ′, F ′′)%GS(F ′ ∧ F, F ′′)
for all F ′′ ∈ ob GS. This follows from the isomorphisms

GGS(F ∧̃F ′, RF ′′)%GGS(F ′ ∧̃F,RF ′′ ◦ T )

and RF ′′%RF ′′ ◦ T , where T is the obvious involution of Γop×Γop.
Finally, we compare both (F ∧ F ′) ∧ F ′′ and F ∧ (F ′ ∧ F ′′) to a more symmetric

Γ-space F ∧F ′∧F ′′, where the space (F ∧F ′∧F ′′)(n+) is defined to be the colimit of
F (i+) ∧ F ′(j+) ∧ F ′′(k+) over i+ ∧ j+ ∧ k+ → n+ (to simplify the exposition, we write
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as if the smash product of pointed sets was associative instead of associative up to
unique natural isomorphism). The isomorphism

GS((F ∧ F ′) ∧ F ′′, F ′′′)%GS(F ∧ F ′ ∧ F ′′, F ′′′)
is obtained by observing that

GS((F ∧ F ′) ∧ F ′′, F ′′′) % GS(F ∧ F ′,Hom (F ′′, F ′′′))
% GGS(F ∧̃F ′, RHom (F ′′, F ′′′))
% GGGS(F ∧̃F ′ ∧̃F ′′, R′F ′′′)

where GGGS is the category of functors from Γop×Γop×Γop to S∗ taking (0+, 0+, 0+)
to 0+, and R′F ′′′ takes (i+, j+, k+) to F ′′′(i+ ∧ j+ ∧ k+). The second isomorphism is
similar.

2·10. Definition. Given a Γ-space F , we obtain an extended functor from spaces to
spaces, which we again denote by F , as follows. If X is any pointed set, define F (X)
as the colimit of F (n+) over n+ → X. If X is any space, define F (X) as the diagonal
of the pointed bisimplicial set which, evaluated at [p], yields F (Xp). We say that F
is extended degreewise.

2·11. Convention. Consider all functors from spaces to spaces that satisfy the fol-
lowing three conditions. First, they are determined by their behaviour on discrete
spaces by using degreewise evaluation and diagonalization, just as in the preceding
definition. Second, they commute with filtered colimits. Third, they take one-point
spaces to one-point spaces. These functors are precisely the functors from spaces to
spaces which are isomorphic to (the degreewise extension of) a Γ-space. In fact, given
any two such functors F and F ′, restriction to Γop gives a bijection between the de-
greewise extended maps from F to F ′ and the maps of Γ-spaces from the restriction
of F to the restriction of F ′. This allows us to identify any such functor with the
degreewise extension of its associated Γ-space and we do this in what follows without
any other comment. For example, we identify S(X) with X, for any space X.

2·12. Definition. We define a natural map F ∧ F ′ → F ◦ F ′, which we call the
assembly map (here F denotes the extended functor from spaces to spaces defined
in Definition 2·10, so that the composition F ◦ F ′ makes sense). This map is an
isomorphism when F ′ equals some Γn (Proposition 2·16).

We first define a map F (X) ∧ Y → F (X ∧ Y ), natural in the spaces X and Y . This
is the map that most resembles other assembly maps in the literature and it is the
special case F ′ = S∧Y . Using degreewise extension, it suffices to define a map of the
form F (n+) ∧m+ → F (n+ ∧m+). We do this as follows. Given i in m+ and x in F (n+),
the element φ(x∧ i) is defined as κ∗(x), where κ denotes the map from n+ to n+ ∧m+

that takes j to j ∧ i. There is a similar map X ∧ F (Y ) → F (X ∧ Y ), natural in the
spaces X and Y . We use the name special assembly map to refer to any of these two
maps.

To handle the general case, by definition of the smash product, it is enough to
specify a natural map F (n+) ∧ F ′(m+) → F (F ′(n+ ∧ m+)). This is defined as the
composition

F (n+) ∧ F ′(m+)→ F (n+ ∧ F ′(m+))→ F (F ′(n+ ∧m+)),
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where the first map is a special assembly map, and the second is given by applying F
to a special assembly map.

2·13. Remark. We are now able to identify the Γ-spaces that represent ‘algebras
over the sphere spectrum’. Surprisingly enough, these turn out to be well known.

Let us say that a Γ-space F is a Gamma-ring, if there are maps µ:F ∧ F→F and
η:S→F satisfying the usual associativity and unit conditions. Then µ corresponds
to µ̃:F ∧̃F→RF , i.e. to a map

µ̃:F (X) ∧ F (Y )→F (X ∧ Y )

natural in X and Y in Γop, which extends degreewise to give a similar map, denoted
again by µ̃, natural in the spaces X and Y . In fact, the Γ-space F is a Gamma-ring
if and only if it is an FSP, as defined by Bökstedt in [Bö], under µ̃, η, and the special
assembly map of Definition 2·12. Further, this defines a full embedding of Gamma-
rings in FSPs, and one can show that all connective FSPs are in the image of this
embedding, up to stable weak equivalence of FSPs.

2·14. Convention. If I is a small category, F a functor from I to pointed sets, i an
object of I and x ∈ F (i), we denote the image of x in colim F by [i, x].

2·15. Proposition. For any non-negative integers m and n, the Γ-spaces Γmn and
Γm ∧ Γn are isomorphic.

Proof. An isomorphism from Γmn to Γm∧Γn is defined by mapping f :m+ ∧ n+→k+

to [f, 1 ∧ 1], where the notation is as in 2·14. Its inverse takes [g, φ ∧ ψ] to
g ◦ (φ ∧ ψ).

2·16. Proposition. The assembly map F ∧ F ′ → F ◦ F ′ is an isomorphism, when-
ever F ′ equals some Γn.

Proof. The case F = Γm follows from the previous proposition. Note that, for
fixed F ′, the functor F ◦ F ′ preserves all limits and colimits and the functor F ∧ F ′
preserves all colimits, since it is a left adjoint. The conclusion will follow if we show
that any F is an iterated colimit of diagrams involving only Γ-spaces of the form Γm

for some m. There is a standard trick to write F this way, which we recall below.
We claim that F is isomorphic to the coequalizer of the two obvious maps∨

l+→m+

Γm ∧ F (l+) −→−→
∨
m+

Γm ∧ F (m+).

To see this, we may assume that F is discrete. Write κ for the canonical map to
the above coequalizer from

∨
m+ Γm ∧ F (m+). A map in one direction takes κ(f ∧ x)

to f∗(x). Its inverse takes x ∈ F (m+) to κ(1 ∧ x), where 1 denotes the identity map
of m+.

2·17. Remark. It follows from the proof of Proposition 2·16 that there is a second
description of the value of the Γ-space F on the space X, namely F (X) is naturally
isomorphic to the coequalizer of∨

l+→m+

Γm(X) ∧ F (l+) −→−→
∨
m+

Γm(X) ∧ F (m+),
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where the two maps are induced from the corresponding maps in the proof of Propo-
sition 2·16. The above statement is true if we take Γm(X) to be as defined in Defini-
tion 2·10, or if we let Γm(X) equal the m-fold cartesian product of X with itself (see
convention 2·11).

Recall from [Bor, Definition 6·1·2] the definition of a symmetric monoidal cate-
gory.

2·18. Theorem. The category of Γ-spaces is symmetric monoidal with respect to the
above smash product.

Proof. We have already verified in Lemma 2·9 that the smash product of Γ-spaces
is associative, commutative, and unital. It remains to show that, given a positive
integer N and Γ-spaces F1, . . . , FN , certain natural automorphisms of F1 ∧ · · · ∧ FN
equal the identity. In fact, every natural automorphism of F1 ∧ · · · ∧ FN equals the
identity. The case N = 2 should suffice to explain the proof, so we assume N = 2
below and we write F and F ′ instead of F1 and F2.

We may assume that F and F ′ are discrete. Let φ be a natural automorphism
of F ∧ F ′. Given a non-negative integer m and x ∈ F (m+), write x̂ for the map
from Γm to F that takes f :m+ → k+ to f∗x. By definition of the smash product,
every z in (F ∧ F ′)(k+) is of the form (x̂ ∧ ŷ)[f, 1m+ ∧ 1n+] for some f :m+ ∧ n+→k+

in Γop, where the notation is as in Convention 2·14. Thus it suffices to show that, for
all non-negative integers m and n, if F = Γm and F ′ = Γn then φ = 1.

Proposition 2·16 implies that GS(Γm∧Γn,Γm∧Γn)%Γop(m+∧n+,m+∧n+). Let
φ = f∗ for some f :m+∧n+→m+∧n+ in Γop. We show that all i∧j inm+∧n+ are fixed
under f . Note that this is trivially true if m = n = 1, since φ is an automorphism.

Let I: 1+ → m+ and J : 1+ → n+ correspond to i and j. It suffices to show that
f ◦ (I ∧ J) = I ∧ J . But

f ◦ (I ∧ J) = (f ◦ (I ∧ J))∗1m+∧n+

= (I ∧ J)∗f∗1m+∧n+

= (I ∧ J)∗φ1m+∧n+

= (I∗ ∧ J∗)φ1m+∧n+

= φ(I∗ ∧ J∗)1m+∧n+

= φ(I ∧ J)
= I ∧ J,

where the fourth equality follows from identifying Γmn with Γm ∧ Γn using Propo-
sition 2·16, the fifth equality follows from naturality and the last equality follows
from the last line of the previous paragraph.

2·19. Remark. The composition product (F, F ′) 7→ F ◦ F ′ is associative and unital
(with unit S), up to natural isomorphism, and the assembly map is compatible with
associativity and unit isomorphisms. In the language of monoidal categories, the
assembly map makes the identity functor of GS a lax monoidal functor from the
monoidal category (GS, ◦,S) to the monoidal category (GS,∧,S).
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3. The skeleton filtration

In this section we define a filtration

∗ = F (0) ⊂ F (1) ⊂ · · · ⊂
∞⋃
m=0

F (m) = F

of a Γ-space F and we prove in Theorem 3·10 that there is a pushout square
giving F (m) in terms of F (m−1) and Γm.

3·1. Definition. Let m be a non-negative integer and F be a Γ-space. The m-
skeleton of F is the Γ-space F (m) defined as follows. In case F is discrete, define

F (m)(n+) = {f∗x| x ∈ F (k+), f : k+→n+, k 6 m},
and extend this definition degreewise in the general case.

Let Σn be the group of automorphisms of n+ in Γop. If Σn acts freely (off the
basepoint) on F/F (n−1)(n+) for all positive integers n, we say that the Γ-space F is
cofibrant. A map of Γ-spaces is a cofibration provided that it is injective and that its
cofiber is cofibrant.

3·2. Proposition. The Γ-space Γn is cofibrant for all n.

Proof. The elements of (Γn)(m−1)(m+) are the non-surjective maps from n+ to m+.
We want to show that given x:n+→m+ and σ ∈ Σm, if σ� 1 and x is onto then
σ ◦ x�x. But if σi� i and xj = i then σxj = σi� i = xj.

3·3. Example. If f : F → F ′ is an injective map of Γ-spaces and F ′ is cofibrant,
then both F and the cofibre of f are cofibrant and f is a cofibration. This is true
because, if G is any group, all subobjects and cofibres of free pointed G-sets are free
(in the pointed sense). Thus the inclusions (Γn)(n−1) ⊂ Γn and Γn ∨ Γm → Γn+m are
cofibrations. These are probably the easiest examples of cofibrations that are not
Q-cofibrations (since their cofibres are not sums of representables).

3·4. Example. Recall the Γ-space HZ of Remark 2·4 and let e: n+ → Z̃[n+] be the
canonical map. Thus Z̃[n+] = Ze(1) + · · · + Ze(n). Then HZ is not cofibrant. In fact,
the element e(1) + e(2) of HZ(2+) is fixed by Σ2, and does not belong to HZ(1)(2+) =
Ze(1)xZe(2). A similar argument shows that HA is not cofibrant, for any non-trivial
abelian group A.

3·5. Example. We recall certain well-known Γ-spaces associated to finite sums in a
category C. We show that, under a mild assumption on C, they are cofibrant (despite
a formal similarity to the Γ-spaces of the previous example; see below). We also show
that, in all interesting cases, these are not Q-cofibrant.

Given an object n+ of Γop, let Pn be the category of pointed subsets of n+ and
inclusions. Let C be a small category with a chosen initial object ∗. Then C determines
a Γ-space F whose value at n+ is the nerve of the following category. Its objects are
all functors from Pn to C that preserve sums (in the sense that they take a diagram
S′ ⊂ S ⊃ S′′ in Pn expressing S as the sum of S′ and S′′ to a similar diagram
in C) and take 0+ to ∗. Its morphisms are the isomorphisms (of functors from Pn

to C) between its objects. The Γ-spaces F of this type were among the important
examples considered in [Se]. For example, if C is the category of finite based sets,
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then the homotopy groups of ΩF (S1) are the stable homotopy groups of spheres,
and if C is the category of finitely generated projective modules over some ring R,
then the homotopy groups of ΩF (S1) are the algebraic K-theory groups of R. If
we assume that finite sums exist in C, then F (n+) is homotopy equivalent to the
product F (1+)n and we see a similarity with the Γ-spaces of Example 3·4. In fact,
the sum in C makes F (1+) an abelian H-space, in particular an abelian monoid in
the homotopy category ho (S∗). The construction HA of Remark 2·4 is possible for
any abelian monoid A in a category D having finite products and a zero object,
and it produces a functor Γop → D. Finally, F lifts H(F (1+)), in the sense that
F and H(F (1+)) are isomorphic as functors Γop →ho (S∗).

We now show that F is cofibrant if and only if the initial object of C is unique
(thus we may always replace C by an equivalent category whose associated Γ-space
is cofibrant). Let σ be a non-trivial element of Σn and let C in F0(n+) be fixed by σ.
Choose a non-trivial cycle for σ, i.e. choose an injection i : Z/m → n+ such that
m > 2 and σi(a) = i(a + 1) for all a in Z/m. Let S be the image of i, so that we
have a representation of C(S) as the sum of all Ca = C({i(a)}), with associated maps
fa : Ca → C(S). Since σC = C, all maps fa are equal. For any object C ′ of C and
any maps g and g′ from C0 to C ′, let h: C(S) → C ′ be the unique map such that
hf0 = g and hfa = g′ for all non-zero elements a of Z/m. Then g = hf0 = hf1 = g′, i.e.
C0 is an initial object. The conclusion follows since the vertices of F (n−1)(n+) consist
of those functors C such that for some element i of n+ we have C({i}) = ∗ and since
actions on nerves of categories are free if and only if they are free on objects.

To conclude this example, we show that if C has finite sums and more than one
object, then F is not Q-cofibrant. By lemma A·3 of [Sch], the zero-simplices of a
Q-cofibrant Γ-space split as a sum of various Γn. Thus, if P is the discrete Γ-space
given by the zero-simplices of F , it suffices to show that P has no non-trivial maps
to Γn, for any n. An element x of Γn(m+) is trivial, if so are its images under all
maps Γn → Γ1. Thus we may assume that n = 1. Fix a map f : P → Γ1 and an
element C in P (n+). We show that f (C) = 0. Let m = 2n. Let p and q be the maps
m+ → n+ which take all i 6 n, resp. all i > n, to 0 and such that, for 1 6 i 6 n,
p(n + i) = i, and q(i) = i. Because C has finite sums, there exists D in P (m+), such
that p∗D = q∗D = C (i.e. given a pointed subset S of m+, the object D(S) is some
choice of the sum over i ∈ S of D(i), with D(i) equal to C(i) if i ∈ n+ and to C(i−n)
if i ∈ n+; further, this choice is fixed if S ⊂ n+ (then D(S) = C(S)) or if S w n+ = 0+

(then D(S) = Cp(S))). In case f (D) ∈ n+ we have f (C) = fp∗(D) = p∗f (D) = 0. In
case f (D) ^ n+ we have f (C) = fq∗(D) = q∗f (D) = 0.

3·6. Proposition. Suppose that D is a pullback square of pointed sets and that F is
a functor from pointed sets to pointed sets. Then F (D) is also a pullback square, provided
that all four maps of D are injective.

Proof. Suppose that D is the square below

X
f−→ Y

i ↓ ↓ j
Z

g−→ W

where we may assume that all maps are inclusions. Choose a retraction u to i and
extend it to a retraction v to j. In other words, the equalities fu = vg and vj = 1
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hold. This can be done because X = Y w Z. Because every injective map of pointed
sets is split, all maps in F (D) are again injective. It remains to show that given y
in F (Y ) and z in F (Z), if they map to the same element in F (W ) then they lift
to F (X). Because g∗ is injective, it suffices to lift y. But u∗(z) is such a lift, since
f∗u∗(z) = v∗g∗(z) = v∗j∗(y) = y.

3·7. Definition. For any non-negative integers n and m, let
(
n
m

)
denote the set of

those injective maps from m+ to n+ which are increasing with respect to the usual
order.

3·8. Proposition. For any Γ-space F and any positive integers m and n, there is a
pushout square (

n
m

)+ ∧ F (m−1)(m+) ⊂ (
n
m

)+ ∧ F (m+)
↓ ↓

F (m−1)(n+) ⊂ F (m)(n+)

where the map
(
n
m

)+ ∧ F (m+)→ F (m)(n+) takes f ∧ x to f∗x.

Proof. We may assume that F is discrete. Since the square above is commutative,
we obtain a map from the pushout of the truncated square to F (m)(n+), which is
surjective. It remains to show that this map is injective.

Since the map from
(
n
m

)+ ∧ F (m−1)(m+) to F (m−1)(n+) is onto, it suffices to show
that, given f∗x = g∗y in F (m)(n+) with x and y in F (m+) and f and g in

(
n
m

)
, if f∧x�

g ∧ y then x and y are in F (m−1)(m+). If f = g, then x = y since f∗ is injective, so
there is nothing to prove in this case. Assume now that f � g and let p+ be their
pullback. Since f and g are distinct increasing injections, they have distinct images,
and therefore p < m. The conclusion now follows from Proposition 3·6.

3·9. Definition. We view Γm as a Γ-Σm-space, that is, a functor from Γop to Σm-
spaces taking 0+ to a point, by using the mapping space action (that is, the image
of f ∈ Γmk under the action of σ ∈ Σm is f ◦ σ−1).

3·10. Theorem. For any Γ-space F and any positive integer m, there is a pushout
square

∂(Γm ∧ F (m+))/Σm ⊂ (Γm ∧ F (m+))/Σm
↓ ↓

F (m−1) ⊂ F (m)

where ∂(Γm ∧ F (m+)) is defined as

Γm ∧ F (m−1)(m+) x(Γm)(m−1)∧F (m−1)(m+) (Γm)(m−1) ∧ F (m+)

and the map (Γm ∧ F (m+))/Σm → F (m) takes the orbit of f ∧ x to f∗x.

Proof. The cofibre of the inclusion ∂(Γm ∧ F (m+)) ⊂ Γm ∧ F (m+) is isomorphic
to Γm/(Γm)(m−1) ∧ (F/F (m−1))(m+). Further, the inclusion of

(
n
m

)+
in Γm(n+) induces

an isomorphism between
(
n
m

)+
and the Σm-orbits of Γm/(Γm)(m−1)(n+). Finally, the

action of Σm on Γm(n+)/(Γm)(m−1)(n+) is free. The conclusion now follows from Propo-
sition 3·8, since a commutative square of pointed sets with horizontal maps injective
is a pushout if and only if the induced map on horizontal cofibres is an isomorphism.
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3·11. Proposition. If F is a discrete cofibrant Γ-space then there exists a pointed

set S such that F (n) is obtained from F (n−1) by attaching Γn ∧ S along (Γn)(n−1) ∧ S.

Proof. Let S = F/F (n−1)(n+)/Σn. For every non-basepoint element s in S, choose a
representative x(s) in F (n+), so that the orbit Σnx(s) equals s, where we have denoted
the image of x(s) in F/F (n−1)(n+) again by x(s). Consider the diagram below, where
the map S → F (n+) is defined by s 7→ x(s).

(Γn)(n−1) ∧ S ⊂ Γn ∧ S
↓ ↓

∂(Γn ∧ F (n+))/Σn ⊂ (Γn ∧ F (n+))/Σn
↓ ↓

F (n−1) ⊂ F (n)

The top square is a pullback square with all four maps injective and every element
of (Γn∧F (n+))/Σn can be lifted either to ∂(Γn∧F (n+))/Σn or to Γn∧S. It follows that
the top square is a pushout, therefore so is the composed square, since the bottom
square is a pushout by Theorem 3·10.

4. Smash products and cofibrations

In this section we show that the smash product of Γ-spaces behaves well with
respect to injective maps and cofibrations.

4·1. Lemma. Let f :F→F ′ be a map of Γ-spaces and n be a positive integer such that
fn+ is injective. Then the equality f (F (n+)) w (F ′)(m)(n+) = f (F (m)(n+)) holds, for all
non-negative integers m 6 n.

Proof. Fix x ∈ F (n+), k 6 m, y ∈ F ′k, s: k
+ → n+ and suppose s∗y = fn+x.

Write s = s′s′′ with s′ injective and s′′ surjective. Replacing y by (s′′)∗y and s by s′,
we see that we may assume that s is injective. Choose r:n+→k+ with rs = 1. Then
fn+s∗r∗x = s∗r∗fn+x = s∗r∗s∗y = s∗y = fn+x and therefore s∗r∗x = x since fn+ is
injective, i.e. fn+x is in f (F (m)(n+)).

4·2. Lemma. Let f :F → F ′ be a map of Γ-spaces and n be a positive integer such
that for all non-negative integers m 6 n the map fm+ is injective. Then the map f (m)

l+ is
injective, for all non-negative integers m 6 n and all non-negative integers l.

Proof. The proof is by induction on m, the case m = 0 being trivial. Since f (m−1)
l+

is injective by induction, it suffices to show that f (m)
l+ /f (m−1)

l+ is injective. This follows
from Proposition 3·8, since fm+ is injective by hypothesis, f (m−1)

m+ is injective by
induction and f (F (m+)) w (F ′)(m−1)(m+) = f (F (m−1)(m+)) by Lemma 4·1.

4·3. Proposition. For any Γ-space F , smashing with F preserves injective maps.

Proof. Fix an injective map of Γ-spaces f : F ′ → F ′′. Since the smash product
F ∧ F ′ of the Γ-spaces F and F ′ can be evaluated degreewise in F , we may assume
that F is discrete. Similarly, we may assume that F ′ and F ′′ are discrete. Since
injections of pointed sets are preserved by filtered colimits, it suffices to show that
for all non-negative integers m the map F ∧ f (m) is injective. This will be shown by
induction on m, the case m = 0 being trivial.

Note that a map of cofibration sequences of pointed sets is injective if it is injective
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on subobjects and quotient objects and that taking Σm-orbits preserves injective
maps. Applying Theorem 3·10 we see that it suffices to show that

F ∧ Γm/(Γm)(m−1) ∧ fm+/f (m−1)
m+

is injective. This amounts to showing that fm+/f (m−1)
m+ is injective. Note that fm+ is

injective by hypothesis and that f (m−1)
m+ is injective, by Lemma 4·2. The conclusion

follows because f (F ′(m+)) w (F ′′)(m−1)(m+) = f ((F ′)(m−1)(m+)), by Lemma 4·1.

4·4. Proposition. If F → F ′ and F̃ → F̃ ′ are two injections of Γ-spaces, then the
canonical map F ∧ F̃ ′ xF∧F̃ F ′ ∧ F̃ → F ′ ∧ F̃ ′ is injective.

Proof. Consider the diagram below.

F ∧ F̃ ′ = F ∧ F̃ ′
↓ ↓

F ∧ F̃ ′ xF∧F̃ F ′ ∧ F̃ → F ′ ∧ F̃ ′
↓ ↓

(F ′/F ) ∧ F̃ → (F ′/F ) ∧ F̃ ′
It follows from Proposition 4·3 that the top right vertical map is injective, as is the
map F ∧ F̃ → F ′ ∧ F̃ and its cobase change, the top left vertical map. Thus the
columns give cofibration sequences of spaces for each n+ in Γop and the conclusion
follows since the bottom horizontal map is injective, by Proposition 4·3 again.

4·5. Lemma. If F and F ′ are cofibrant Γ-spaces, then so is F ∧ F ′.
Proof. We may assume that F and F ′ are discrete. Assume for the moment that

F = Γm.
If F ′ = Γn, the conclusion follows from Propositions 2·15 and 3·2. It follows from

Proposition 4·3 that the map F ∧ (Γn)(n−1) → F ∧Γn is a cofibration, because it is an
injection of Γ-spaces with cofibrant target. Note that cofibrations are closed under
cobase change and sequential colimits. The case F ′ is any discrete cofibrant Γ-space
now follows using Proposition 3·11.

This completes the proof in case F = Γm. The proof of the general case proceeds
as in the previous paragraph.

4·6. Theorem. If F → F ′ and F̃ → F̃ ′ are two cofibrations of Γ-spaces, then the
canonical map κ: F ∧ F̃ ′ xF∧F̃ F ′ ∧ F̃ → F ′ ∧ F̃ ′ is a cofibration.

Proof. The cofibre of κ is isomorphic to (F ′/F ) ∧ (F̃ ′/F̃ ). The conclusion now
follows from Lemma 4·5 and Proposition 4·4.

5. Smash products and weak equivalences

There are three main results in this section, Theorems 5·1, 5·11 and 5·12.

5·1. Theorem. Smashing with a cofibrant Γ-space preserves strict weak equivalences.

5·2. Proposition. For any strict weak equivalence of Γ-spaces F → F ′ and any
non-negative integer m, the map F (m) → (F ′)(m) is a strict weak equivalence.

Proof. This follows immediately from Proposition 3·8.
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Proof of Theorem 5·1 Since the smash product of the Γ-spaces F and F ′ can be

evaluated degreewise in F , we may assume that F is discrete. By Proposition 4·3 it
suffices to show that, for all non-negative integers n, smashing with F (n) preserves
strict weak equivalences. We prove this by induction on n. The case n = 0 is trivial.
It follows from Proposition 3·11 that F (n) is obtained from F (n−1) by attaching Γn∧S
along (Γn)(n−1)∧S, for some pointed set S. The conclusion follows because smashing
with F (n−1), (Γn)(n−1) and Γn preserves strict weak equivalences, since the inductive
hypothesis applies to the first two and, by Proposition 2·16, smashing with Γn is the
same as composing with Γn and composing with any Γ-space preserves strict weak
equivalences. q

Before we state the remaining main results of this section, we define spectra, stable
weak equivalences of Γ-spaces and the (naive) smash product of spectra.

5·3. Definition. A spectrum E consists of a sequence of spaces En and a sequence
of maps En

n+1:S
1 ∧En→En+1, for n = 0, 1, . . ., where S1 is the space ∆1/∂∆1. A map

f :E→E′ of spectra is a sequence of maps fn:En→E′n such that

fn+1 ◦ En
n+1 = (E′)nn+1 ◦ (S1 ∧ fn).

A spectrum determines direct systems

· · · → πm(En)→ πm+1(En+1)→ · · ·
and we define the homotopy groups of E by πn(E) = colim k πn+k(Ek). A map of spec-
tra is called a weak equivalence provided that it induces isomorphisms on homotopy
groups.

5·4. Definition. Define the spectrum F (S) associated to the Γ-space F by setting
F (S)n = F (Sn), where Sn+1 is defined recursively as S1 ∧ Sn and where the maps
F (S)nn+1 are obtained from the special assembly map. A map f of Γ-spaces is called
a stable weak equivalence provided that f (S) is a weak equivalence of spectra.

5·5. Example. Recall from Lemma 2·6 and Remark 2·8 that the maps of Γ-spaces
from S to F are given by the vertices of F (1+). Now let F be as in Example 3·5 with
C = Γop. Thus F (1+) may be identified with the nerve of the isomorphisms of Γop.
The map S → F determined by the object 1+ of Γop is a stable weak equivalence.
This is essentially the version of the Barratt–Priddy–Quillen–Segal theorem proved
in [Se].

5·6. Remark. The analogue of Proposition 5·2 for stable weak equivalences is false.
A counterexample form = 1 and F ′ = ∗ is provided by setting F (n+) equal to n+∧ n+.

5·7. Remark. We are now able to describe Σ∞ and Ω∞ functors. The functor Σ∞

associates to a space X the Γ-space Σ∞X, that takes n+ to n+ ∧X. The functor Ω∞

associates to a Γ-space F the space F (1+). Then Σ∞ is left adjoint to Ω∞ and takes
weak equivalences of spaces to stable (in fact, strict) weak equivalences of Γ-spaces,
when restricted to cofibrant objects. This is no restriction at all, because (recall that
‘space’ means ‘pointed simplicial set’ in this paper) all spaces are cofibrant. We add
it for the sake of symmetry, because in order for the functor Ω∞ to take stable weak
equivalences to weak equivalences of spaces we have to restrict it to stably fibrant
objects (see [BF]), or at least to stably Q-fibrant objects (see [Sch]). These classes
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of Γ-spaces are contained in the class of very special Γ-spaces and for very special
Γ-spaces the notions of stable and strict weak equivalence coincide (see sections 4
and 5 of [BF]).

5·8. Definition. Let t be the natural isomorphism that interchanges the second and
third factors in the smash product of spaces X ∧ Y ∧ Z ∧W .

5·9. Definition. The smash product E ∧E′ of the spectra E and E′ is the spectrum
given by (E ∧ E′)2n = En ∧ E′n, (E ∧ E′)2n+1 = S1 ∧ (E ∧ E′)2n, (E ∧ E′)2n

2n+1 = 1
and (E ∧ E′)2n+1

2n+2 = (En
n+1 ∧ (E′)nn+1) ◦ t.

5·10. Proposition. Smashing with a spectrum preserves weak equivalences.

Proof. This follows essentially because πn commutes with sequential colimits of
spaces (recall that ‘space’ means ‘pointed simplicial set’ and πn(X) is the set of
pointed homotopy classes of maps from Sn to the singular complex of the realization
of X).

5·11. Theorem. There is a map of spectra F (S) ∧ F ′(S) → (F ∧ F ′)(S), natural in
the Γ-spaces F and F ′, which is a weak equivalence if one of the factors is cofibrant.

5·12. Theorem. Smashing with a cofibrant Γ-space preserves stable weak equiva-
lences.

Proof. This follows immediately from Theorem 5·11 and Proposition 5·10.

5·13. Definition. An S2-spectrum E consists of a sequence of spaces E2n and a
sequence of mapsE2n

2n+2:S
2∧E2n→E2n+2, for n = 0, 1, . . . . We define maps, homotopy

groups and weak equivalences of such objects, so that forgetting the odd terms of
a spectrum gives a functor E 7→ E∗ that preserves weak equivalences. A Γ-space F
determines an S2-spectrum F (St), where F (St)2n = F (S2n). The structural maps are
given by the composition

S1 ∧ S1 ∧ F (Sn ∧ Sn)→ F (S1 ∧ S1 ∧ Sn ∧ Sn) t∗→F (S1 ∧ Sn ∧ S1 ∧ Sn),

where the first map is the special assembly map.

5·14. Proposition. The S2-spectra F (S)∗ and F (St) are naturally isomorphic.

Proof. Define the spectrum S by S = S(S), and the S2-spectrum St by St = S(St).
Note that the conclusion of the proposition is true in the special case F = S, i.e.
S∗ and St are isomorphic. The general case follows because F (S)∗, respectively F (St),
is obtained from a functorial construction which, to a Γ-space F and an S2-spectrum
E, associates the S2-spectrum F (E), by letting E = S∗, respectively E = St. q

The only reason we consider F (St), and, in fact, the only reason we consider
S2-spectra, is to be able to write the map in the statement of Theorem 5·11 as a
composition of simpler maps. One of these simpler maps is given by Proposition 5·14
and another by Proposition 5·15.

5·15. Proposition. There is a non-trivial map (F (S) ∧ F ′(S))∗ → (F ∧ F ′)(St),
natural in the Γ-spaces F and F ′.
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Proof. Recall that there is a natural map F (m+)∧F ′(n+)→ (F ∧F ′)(m+ ∧n+) (in

fact, F ∧ F ′ is essentially defined by saying that it is universal with this property).
This map extends degreewise to a natural map F (X) ∧ F ′(Y ) → (F ∧ F ′)(X ∧ Y ),
whereX and Y are spaces. The map we want is obtained from this map by evaluating
on spheres.

5·16. Lemma. If F and F ′ are Γ-spaces and F is cofibrant, then the map

(F (S) ∧ F ′(S))∗ → (F ∧ F ′)(St)
is a weak equivalence.

Proof of Theorem 5·11. Note that the forgetful functor E 7→ E∗ from spectra to
S2-spectra has a left adjoint L, such that (LE)2n = E2n, (LE)2n+1 = S1 ∧ E2n,
(LE)2n

2n+1 = 1 and (LE)2n+1
2n+2 = E2n

2n+2. The conclusion now follows from Proposi-
tion 5·14, Lemma 5·16 and the fact that, for any spectra E and E′, the equality
E ∧ E′ = L(E ∧ E′)∗ holds.

5·17. Definition. We say that a Γ-space F is o(n)-connected provided that for any
simply-connected space X the space F (X) is as connected as X∧n. We say that a
Γ×Γ-space F is o(n)-connected provided that so is its restriction to the diagonal. We
say that a map of Γ-spaces, resp. Γ×Γ-spaces, is o(n)-connected provided that so is
its (pointwise) homotopy cofibre.

5·18. Lemma. The map of Γ×Γ-spaces given by

F (X) ∧ F ′(Y )→ (F ∧ F ′)(X ∧ Y )

is o(3)-connected, for any Γ-spaces F and F ′ with F cofibrant.

Proof of Lemma 5·16. By Lemma 5·18, there is a constant c such that the map
F (Sn) ∧ F ′(Sn)→ (F ∧ F ′)(S2n) is (3n + c)-connected for n > 1.

5·19. Proposition. For any Γ-space F there is a natural strict weak equivalence
F c → F with F c cofibrant.

Proof. We may assume that the Γ-space F is discrete. Let C(n+) be the following
category. Its objects are the pairs (f, x) such that f : m+ → n+ and x ∈ F (m+).
There is one morphism from (f, x) to (g, y) for each h in Γop such that gh = f and
h∗(x) = y. Define F ′(n+) as the nerve of C(n+). There is a map F ′(n+) → F (n+)
taking (f, x) to f∗(x), and is the disjoint union of projections of nerves of categories
to their terminal objects, in particular a weak equivalence. Note that

F ′q%
∐

(k0,...,kq)

Γkq × Γop(k+
q−1, k

+
q )× · · · × Γop(k+

0 , k
+
1 )× F (k+

0 ).

The required Γ-space F c is given by a pointed version of this. Let

F cq =
∨

(k0,...,kq)

Γkq ∧ Γop(k+
q−1, k

+
q ) ∧ · · · ∧ Γop(k+

0 , k
+
1 ) ∧ F (k+

0 )

so that we have a canonical map F ′ → F c. Then it is still true that there is a map
F c → F and that, for fixed n+, there is a section F (n+) → F c(n+), as well as a
map F c(n+) ∧ (∆1)+ → F c(n+) which is a homotopy between the identity and the
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composition F c(n+) → F (n+) → F c(n+). All these maps are compatible with the
canonical map F ′ → F c and exist essentially because Γop is a pointed category
and F is a pointed functor.

Proof of Lemma 5·18. Suppose first that F equals Γn and that F ′ equals Γm.
The map in the statement of the lemma corresponds, under the isomorphism of
Proposition 2·15 between Γn ∧ Γm and Γnm, to the map ψ that takes (f, g) to f ∧ g.
Define a filtration

∗ = F0Γn ⊂ F1Γn ⊂ · · · ⊂ FnΓn = Γn

of Γn by letting FkΓn(m+) consists of those f :n+ →m+ such that the cardinality
of f−1(0) is at least (n+1−k). Then FkΓn/Fk−1Γn(X) is isomorphic to

(
n
k

)+∧X∧k. In
particular, the map FkΓn ⊂ Γn is o(k+1)-connected and F1Γn is isomorphic to n∧Γ1.
The restriction of ψ to F1Γn(X) ∧ F1Γm(Y ) is an isomorphism onto F1Γnm(X ∧ Y ).
The conclusion follows from this, together with the fact that F1Γk and Γk are o(1)-
connected (for any k).

Suppose now that F ′ is discrete. We prove that the lemma is true in this case, by
proving that it is true for all (F ′)(m). As usual, the proof will be by induction on m,
the case m = 0 being trivial. The inductive step follows from the previous paragraph
and Proposition 3·11.

In case F ′ is any cofibrant Γ-space, the lemma is true because diagonalization pre-
serves connectivity. The complete special case F = Γn now follows from Theorem 5·1
and Propositions 3·2 and 5·19. The rest of the proof is similar, i.e. the discrete case
is done by induction on skeleta and then the general case of an arbitrary cofibrant
Γ-space F follows because diagonalization preserves connectivity. q

We conclude this section by proving certain interesting statements about Γ-spaces.

5·20. Proposition. Any Γ-space F preserves connectivity, i.e. if f is a k-connected
map of spaces, then so is F (f ). In particular, F is a homotopy functor, i.e. it preserves
weak equivalences of spaces.

Proof. This follows from Propositions 3·11 and 5·19.

5·21. Proposition. If X and Y are connected spaces and F is a Γ-space, the map
F (X) ∧ Y → F (X ∧ Y ) is as connected as the suspension of X∧2 ∧ Y .

Proof. The proof is similar to, but easier than, the proof of Lemma 5·18.

5·22. Proposition. If X,Y are connected spaces and F, F ′ are Γ-spaces with F cofi-
brant, then the map F (X)∧F ′(Y )→ (F ∧F ′)(X ∧Y ) is as connected as the suspension
of (X∧2 ∧ Y ) ∨ (X ∧ Y ∧2).

Proof. The proof is the same as the proof of Lemma 5·18.

5·23. Proposition. The assembly-map F ∧F ′ → F ◦F ′ is a stable weak equivalence,
whenever F or F ′ is cofibrant.

Proof. Given the previous proposition, it suffices to show that the associated map
f : F (X) ∧ F ′(Y ) → (F ◦ F ′)(X ∧ Y ) is highly connected, if so are X and Y . This
follows from the definition of f , together with Propositions 5·20 and 5·21.
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6. Cofibrations and strict cofibrations

In this section we show that our definitions of the skeleta and the cofibrations of
Γ-spaces are equivalent to those found in [BF, pp. 89, 91], which we now recall.

6·1. Definition. Let m be a non-negative integer. The functor skm: GS→ GS is
defined as follows. If F is a Γ-space and n is a non-negative integer, define (skmF )(n+)
to be the colimit over all k+ → n+ with k 6 m of F (k+).

There is a map skmF → F , given for f : k+ → n+ by f∗: F (k+) → F (n+). A map
of Γ-spaces f : F → F ′ is called a strict cofibration provided that for all positive
integers n the map

gn: F (n+) x(skn−1F )(n+) (skn−1F
′)(n+)→ F ′(n+)

is injective and the action of Σn is free off the image of gn.

6·2. Proposition. For any Γ-space F and any non-negative integer m, the Γ-spaces
F (m) and skmF are isomorphic.

Proof. The map skmF → F induces a surjective map skmF → F (m), which we
show is also injective. Fix a non-negative integer n, as well as maps f : k+→n+ and
g: l+→n+ with k, l 6 m. We have to show that if f∗x = g∗y in F (n+), then [f, x] =
[g, y] in (skmF )(n+), where the notation is as in 2·14. By arguing as in the proof of
Lemma 4·1, we may assume that f and g are injective. By Proposition 3·6, if p+ is
the pullback of f and g, then x and y can be lifted to z in F (p+). If h: p+→n+ is the
associated canonical map, both [f, x] and [g, y] equal [h, z].

6·3. Lemma. Strict cofibrations of Γ-spaces are injective.

Proof. Let f :F → F ′ be a strict cofibration of Γ-spaces. We prove by induction
on n that fm+ is injective for all m 6 n. The case n = 0 is trivial.

By Lemma 4·2 and the inductive hypothesis, F (n−1)(n+) injects into (F ′)(n−1)(n+).
Therefore F (n+) injects into F (n+) xF (n−1)(n+) (F ′)(n−1)(n+), which in turn injects
into F ′(n+) by the definition of strict cofibration and Proposition 6·2.

6·4. Proposition. A map of Γ-spaces f :F→F ′ is a cofibration if and only if it is a
strict cofibration.

Proof. For any injection of Γ-spaces f :F → F ′ and any positive integer n, the
map gn of Definition 6·1 is isomorphic over F ′(n+) to the inclusion

f (F (n+)) x (F ′)(n−1)(n+) ⊂ F ′(n+).

This follows from Proposition 6·2 and the fact that, by Lemma 4·1,

f (F (n+)) w (F ′)(n−1)(n+) = f (F (n−1)(n+)).

The conclusion now follows from Lemma 6·3.
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