Picture of Egor Pifagorov
David Dereudre (Lille University) "Continuum percolation for the Boolean model"
by Egor Pifagorov - Tuesday, 17 June 2014, 06:58 PM
Специальный семинар лаборатории Чебышева
(14-я линия В.О. 29)

Во вторник 24 июня в 17:00 в ауд. 413 состоится лекция

David Dereudre (Lille University)

"Continuum percolation for the Boolean model"

The Boolean model is defined as a union of balls in $R^d$ where the centers are the points of an homogeneous Poisson point process with intensity $z>0$ and the radii are independent and identically distributed following a law $Q$ on $R^+$. The percolation properties mainly refer to the existence of an unbounded connected component in a random spatial model. In this talk we give classical results for the percolation of the Boolean model. In particular, we will see several phase transition results with respect to the stochastic properties of $Q$ (moments, support, etc). We will discuss conjectures about the critical volumic fraction of percolation.

Лекция рассчитана на широкую аудиторию.

David Dereudre также прочитает мини-курс в лаборатории Чебышева на тему

"Stochastic Geometry and Statistical Mechanics"

Лекции состоятся 26 и 27 июня в 13:00 в ауд. 413.

Анонс курса прилагается. Приглашаются все желающие.