Физико-математический клуб при ПОМИ и СПбГУ

You are not logged in. (Login)
 

 
Skip Main MenuSkip Calendar

Calendar

Mon Tue Wed Thu Fri Sat Sun
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 Today Thursday, 17 October 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31    

Последние известия

Picture of Egor Pifagorov
Семинар по интегрируемым системам
by Egor Pifagorov - Wednesday, 16 October 2019, 02:02 PM
 
Чт, 9.00, ПОМИ (106):

На ближайшем семинаре мы закончим доказательство теоремы Лиувилля, а в оставшееся время сделаем несколько важных замечаний по поводу теоремы и, в частности, обсудим, что такое переменные действие-угол.
Picture of Egor Pifagorov
Семинар по интегрируемым системам
by Egor Pifagorov - Tuesday, 8 October 2019, 10:50 PM
 
Чт, 9.00, ПОМИ (106):

В прошлый раз мы дали определение интегрируемой системы по Лиувиллю. В этот четверг мы посмотрим на теорему Лиувилля, которая говорит, как решать произвольную интегрируемую систему, и для наглядности, применим эту технику к задаче Кеплера. По пути нам также придется обсудить канонические преобразования.
Picture of Egor Pifagorov
Дополнительные главы линейной алгебры и математического анализа для нематематиков
by Egor Pifagorov - Thursday, 3 October 2019, 05:42 PM
 
Дополнительные главы линейной алгебры и математического анализа
для нематематиков

Занятия по средам в 17.30 в ауд. 106 ПОМИ.
Первое занятие в следующую среду 9.10.19

Мы продолжаем серию курсов, имеющих целью повышение математической грамотности нематематиков – прежде всего инженеров и программистов. В настоящее время объем математических курсов в обязательной программе высшего образования инженеров, прикладных математиков и информатиков уменьшился кратно по сравнению с ситуацией 30-40 летней давности. Соответственно изменился и (a) объем математических знаний и (б) общая математическая культура выпускников нематематических специальностей вузов. Цель этого курса – постараться довести уровень (а) и (б) до того, который считался нормальным 30-40 лет назад, и фактически является минимально необходимым для работы инженеров во многих высокотехнологических отраслях промышленности (скажем, в разработке сложного программного обеспечения, робототехнике, анализе больших данных).

Занятия могут быть полезны прежде всего студентам первого курса технических и смежных с ними специальностей вузов.

В текущем, 2019/20 учебном году мы предполагаем сосредоточиться в основном на линейной алгебре и частично на аналитической геометрии, возможно, с элементами дифференциальной геометрии кривых и поверхностей. Примерный набор тем, который предполагается осветить, приведен ниже.
1. Системы линейных алгебраических уравнений. Метод Гаусса-Йордана (метод полного исключения). Элементы алгебры матриц. Транспонирование, эрмитово сопряжение, умножение матриц. Матричные уравнения. Обратная матрица.
2. Квадратные матрицы. Определитель. Обращение квадратной матрицы. LU-разложение.
3. Пространства R^n и C^n. (Абстрактное) линейное пространство. Линейная зависимость векторов. Размерность пространства, базисы. Пространства полиномов. Полиномиальная интерполяция. Полиномиальные сплайны.
4. Собственные числа и собственные векторы квадратной матрицы. Подобные матрицы.
5. Скалярное произведение векторов. Норма вектора. Ортогональность векторов. Унитарная матрица. Площадь параллелограмма и объем параллелепипеда. Алгоритм Грама--Шмидта. $QR$-разложение матрицы.
6. Самосопряженная матрица. Свойства собственных чисел и собственных векторов. Метод Якоби.
7. Линейные формы. Квадратичные формы. Геометрическая интерпретация квадратичных форм.
8. Линейный метод наименьших квадратов. Сингулярные числа и сингулярные базисы матрицы. Псевдорешение системы линейных алгебраических уравнений. Полиномиальное сглаживание. Сглаживание полиномами, ортогональными на сетке. Дискретное преобразование Фурье.
9. Элементарный анализ погрешностей. Норма матрицы. Трансформированная погрешность решения системы линейных алгебраических уравнений. Число обусловленности матрицы. Метод простой итерации.
10. Аналитическая геометрия в евклидовом пространстве. Произведения векторов (векторное, скалярное, смешанные). Вычисление длин, площадей, объемов. Косоугольные системы координат и двойственные базисы. Вычисления в косоугольных координатах.
11. Элементы тензорной алгебры. Ковариантный и контравариантный координаты векторов и теноров. Метрический тензор.
12. Кривые и поверхности. Криволинейные координаты. Вычисление длин, площадей и объемов. Кривизна кривой и кривизны поверхностей.
Picture of Egor Pifagorov
Физические семинары начнутся 5 октября в 311 аудитории ПОМИ
by Egor Pifagorov - Thursday, 3 October 2019, 05:32 PM
 

Course categories


Skip Руководство пользователя сайта

Руководство пользователя сайта




Коротко:
1. описание каждого курса доступно всем гостям - голубая кнопка с буквой "i" напротив названия курса.

Если что-то заинтересовало, то:
2. регистрируетесь на сайте
(используйте настоящее имя по-русски, пользователи с сетевыми кличками удаляются
еще раз: пользуйтесь настоящими именами по-русски и правдоподобными адресами. Ввиду атак спам-роботов все подозрительное выкидывается без разбирательства
)
3. регистрируетесь на интересующих Вас курсах и получаете доступ к форуму, объявлениям и всем материалам курса.
4. Если вы зарегистрировались на курс, который оказался вам не нужным, -- пользуйтесь "исключить" из меню "управление" курса. Храните пожалуйста подписки только на интересующие вас курсы.
Skip Наши спонсоры

Наши спонсоры


Russian Academy of Sciences
Рссийская Академия Наук

Лаборатория имени П.Л. Чебышева СПбГУ
Лаборатория имени
П.Л. Чебышева СПбГУ

Наши частные спонсоры:

Андрей Гринберг

Михаил Зверев
(Standard Life Investments, Эдинбург)
Антон Лиходедов
(Deutsche Bank, Лондон)
Василий Филиппов
(Яндекс, Санкт-Петербург)

Skip Наши друзьяSkip Online Users

Online Users

(last 5 minutes)