В четверг 25 сентября в 17:00 в лаборатории Чебышева (ауд. 14, 14-я линия В.О. 29) состоится доклад лауреата премии им. Ламе Харальда Хельфготта о его решении тернарной проблемы Гольдбаха.
Harald Helfgott (CNRS / Université de Paris VI/VII)
Title: The ternary Goldbach conjecture
Abstract: The ternary Goldbach conjecture (1742) asserts that every odd number greater than 5 can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant C satisfies the conjecture. In the years since then, there has been a succession of results reducing C, but only to levels much too high for a verification by computer up to C to be possible (C>10^1300). (Works by Ramare and Tao have solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas in the proof.