Picture of Egor Pifagorov
Александр Полянский (МФТИ) «Теоремы о полосках»
by Egor Pifagorov - Thursday, 22 February 2018, 05:22 PM
 
КОЛЛОКВИУМ ЛАБОРАТОРИИ ИМ. ЧЕБЫШЕВА

Четверг 1 марта 17:15 ауд. 14 (14-я линия В. О., 29)

Александр Полянский (МФТИ)

«Теоремы о полосках»

Полоской ширины $w$ в $\mathbb R^d$ называется множество точек, которые лежат между двумя параллельными гиперплоскостями, находящимися на расстоянии $w$ друг от друга. Шириной выпуклого тела $C$ в $\mathbb R^d$ называется наименьшая ширина полоски, которая содержит $C$. В 1932 году Тарский доказывает теорему, следствием которой является знаменитое утверждение:

Если круг покрыт полосками, то ширина круга не больше суммарной ширины полосок.

Позже Банг в 1950 году обобщает это утверждение (известное как задача Тарского о полосках):

Если выпуклое тело покрыто полосками, то ширина этого выпуклого тела не больше суммарной ширины полосок.

Задача Тарского о полосках стала одна из самых популярных задач дискретной геометрии. Было поставлено несколько новых вопросов, которые обобщают задачу Тарского о полосках. Некоторые из этих задач частично или полностью решены, некоторые до сих пор остаются открытыми. В частности год назад Цзылин Цзян и докладчик доказали сферический аналог теоремы Тарского (ранее известный как гипотеза Лазсло Фейеш Тота).

Доклад будет посвящён обсуждению различных открытых вопросов родственных задаче Тарского.

Приглашаются все желающие!